120
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Exploring binding modes of the selected inhibitors to SND1 by all-atom molecular dynamics simulations

, , , , , & show all
Pages 5536-5550 | Received 31 Mar 2023, Accepted 13 Jun 2023, Published online: 22 Jun 2023

References

  • Al-Kelabi, H., Al-Duhaidahawi, D., Al-Khafaji, K., & Al-Masoudi, N. A. (2023). New tamoxifen analogs for breast cancer therapy: Synthesis, aromatase inhibition and in silico studies. Journal of Biomolecular Structure and Dynamics, 1–10. https://doi.org/10.1080/07391102.2023.2175375
  • Anbuselvam, M., Easwaran, M., Meyyazhagan, A., Anbuselvam, J., Bhotla, H. K., Sivasubramanian, M., Annadurai, Y., Kaul, T., Pappusamy, M., & Balasubramanian, B. (2021). Structure-based virtual screening, pharmacokinetic prediction, molecular dynamics studies for the identification of novel EGFR inhibitors in breast cancer. Journal of Biomolecular Structure & Dynamics, 39(12), 4462–4471. https://doi.org/10.1080/07391102.2020.1777899
  • Andersen, H. C. (1983). Rattle: A “velocity” version of the shake algorithm for molecular dynamics calculations. Journal of Computational Physics, 52(1), 24–34. https://doi.org/10.1016/0021-9991(83)90014-1
  • Aslyamov, T., & Akhatov, I. (2019). Zeros of partition functions in the NPT ensemble. Physical Review E, 100(5–1), 052118. https://doi.org/10.1103/PhysRevE.100.052118
  • Bitencourt-Ferreira, G., & de Azevedo, W. F., Jr. (2019). Homology modeling of protein targets with MODELLER. Methods in Molecular Biology, 2053, 231–249. https://doi.org/10.1007/978-1-4939-9752-7_15
  • Canovas, B., Igea, A., Sartori, A. A., Gomis, R. R., Paull, T. T., Isoda, M., Perez-Montoyo, H., Serra, V., Gonzalez-Suarez, E., Stracker, T. H., & Nebreda, A. R. (2018). Targeting p38 alpha increases DNA damage, chromosome instability, and the anti-tumoral response to taxanes in breast cancer cells. Cancer Cell, 33(6), 1094–1110.e8. https://doi.org/10.1016/j.ccell.2018.04.010
  • Case, D. A., Aktulga, H. M., Belfon, K., Ben-Shalom, I., Brozell, S. R., Cerutti, D. S., Cheatham, T. E., III, Cruzeiro, V. W. D., Darden, T. A., & Duke, R. E. (2021). Amber 2021. University of California.
  • Case, D. A., Cheatham, T. E., Darden, T., Gohlke, H., Luo, R., Merz, K. M., Onufriev, A., Simmerling, C., Wang, B., & Woods, R. J. (2005). The Amber biomolecular simulation programs. Journal of Computational Chemistry, 26(16), 1668–1688. https://doi.org/10.1002/jcc.20290
  • Chen, J. (2018). Functional roles of magnesium binding to extracellular signal-regulated kinase 2 explored by molecular dynamics simulations and principal component analysis. Journal of Biomolecular Structure & Dynamics, 36(2), 351–361. https://doi.org/10.1080/07391102.2016.1277783
  • Chen, J., Zeng, Q., Wang, W., Sun, H., & Hu, G. (2022). Decoding the identification mechanism of an SAM-III Riboswitch on ligands through multiple independent Gaussian-accelerated molecular dynamics simulations. Journal of Chemical Information and Modeling, 62(23), 6118–6132. https://doi.org/10.1021/acs.jcim.2c00961
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N⋅ log (N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. https://doi.org/10.1063/1.464397
  • Ding, J. N., Zhang, Y. J., Zhong, H., Ao, C. C., & Han, J. G. (2018). A simulation investigation on interaction mechanism between Ebola nucleoprotein and VP35 peptide. Journal of Biomolecular Structure & Dynamics, 36(4), 1009–1028. https://doi.org/10.1080/07391102.2017.1307143
  • Ding, J. N., Zhang, Y. J., Zhong, H., Ao, C. C., Li, J., & Han, J. G. (2017). An all-atom molecular dynamics study of the anti-interferon signaling of Ebola virus: Interaction mechanisms of EBOV VP24 binding to Karyopherin alpha5. Molecular BioSystems, 13(5), 1031–1045. https://doi.org/10.1039/c7mb00136c
  • Feng, T. T., Zhang, Y. J., Ding, J. N., Fan, S., & Han, J. G. (2015). Insights into resistance mechanism of the macrolide biosensor protein MphR(A) binding to macrolide antibiotic erythromycin by molecular dynamics simulation. Journal of Computer-Aided Molecular Design, 29(12), 1123–1136. https://doi.org/10.1007/s10822-015-9881-0
  • Genheden, S., & Ryde, U. (2015). The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opinion on Drug Discovery, 10(5), 449–461. https://doi.org/10.1517/17460441.2015.1032936
  • Gruchalla, K., Marbach, J., & Dubin, M. (2007). Porting legacy applications to immersive virtual environments – A case study. Grapp 2007: Proceedings of the Second International Conference on Computer Graphics Theory and Applications, Barcelona, Spain.
  • Guenole, J., Nohring, W. G., Vaid, A., Houlle, F., Xie, Z. C., Prakash, A., & Bitzek, E. (2020). Assessment and optimization of the fast inertial relaxation engine (FIRE) for energy minimization in atomistic simulations and its implementation in LAMMPS. Computational Materials Science, 175, 109584. https://doi.org/10.1016/j.commatsci.2020.109584
  • Guo, F., Wan, L. L., Zheng, A. P., Stanevich, V., Wei, Y., Satyshur, K. A., Shen, M. H., Lee, W., Kang, Y. B., & Xing, Y. N. (2014). Structural insights into the tumor-promoting function of the MTDH-SND1 complex. Cell Reports, 8(6), 1704–1713. https://doi.org/10.1016/j.celrep.2014.08.033
  • Homeyer, N., Stoll, F., Hillisch, A., & Gohlke, H. (2014). Binding free energy calculations for lead optimization: Assessment of their accuracy in an industrial drug design context. Journal of Chemical Theory and Computation, 10(8), 3331–3344. https://doi.org/10.1021/ct5000296
  • Ikeguchi, M. (2004). Partial rigid-body dynamics in NPT, NPAT and NP gamma T ensembles for proteins and membranes. Journal of Computational Chemistry, 25(4), 529–541. https://doi.org/10.1002/jcc.10402
  • Kollman, P. A., Massova, I., Reyes, C., Kuhn, B., Huo, S., Chong, L., Lee, M., Lee, T., Duan, Y., Wang, W., Donini, O., Cieplak, P., Srinivasan, J., Case, D. A., & Cheatham, T. E. (2000). Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. Accounts of Chemical Research, 33(12), 889–897. https://doi.org/10.1021/ar000033j
  • Lam, W. W. T., & Siu, S. W. I. (2017). PyMOL mControl: Manipulating molecular visualization with mobile devices. Biochemistry and Molecular Biology Education, 45(1), 76–83. https://doi.org/10.1002/bmb.20987
  • Lamichhane, S., Rai, R. P., Khatri, A., Adhikari, R., Shrestha, B. G., & Shrestha, S. K. (2021). Screening of phytochemicals as potential anti-breast cancer agents targeting HER2: An in-silico approach. Journal of Biomolecular Structure and Dynamics, 41(3), 897–911. https://doi.org/10.1080/07391102.2021.2014972
  • Lei, W., Yang, C., Wu, Y., Ru, G. Q., He, X. L., Tong, X. M., & Wang, S. B. (2022). Nanocarriers surface engineered with cell membranes for cancer targeted chemotherapy. Journal of Nanobiotechnology, 20(1), 45. https://doi.org/10.1186/s12951-022-01251-w
  • Makarewicz, T., & Kaźmierkiewicz, R. (2013). Molecular dynamics simulation by GROMACS using GUI Plugin for PyMOL. Journal of Chemical Information and Modeling, 53(5), 1229–1234. https://doi.org/10.1021/ci400071x
  • Martínez, L. (2015). Automatic identification of mobile and rigid substructures in molecular dynamics simulations and fractional structural fluctuation analysis. PloS One, 10(3), e0119264. https://doi.org/10.1371/journal.pone.0119264
  • Pal, R., Deb, I., Sarzynska, J., & Lahiri, A. (2022). LNA-induced dynamic stability in a therapeutic aptamer: Insights from molecular dynamics simulations. Journal of Biomolecular Structure and Dynamics, 41(6), 2221–2230. https://doi.org/10.1080/07391102.2022.2029567
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF chimera – A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Rani, M., Nath, A., & Kumer, A. (2022). In-silico investigations on the anticancer activity of selected 2-aryloxazoline derivatives against breast cancer. Journal of Biomolecular Structure and Dynamics, 0(0), 1–10. https://doi.org/10.1080/07391102.2022.2134208
  • Riihimaki, E. S., Martinez, J. M., & Kloo, L. (2006). An evaluation of non-periodic boundary condition models in molecular dynamics simulations using prion octapeptides as probes. Journal of Molecular Structure: THEOCHEM, 760(1–3), 91–98. https://doi.org/10.1016/j.theochem.2005.11.027
  • Roe, D. R., & Cheatham, T. E. (2013). PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. Journal of Chemical Theory and Computation, 9(7), 3084–3095. https://doi.org/10.1021/ct400341p
  • Sanchez, A., & Sanchez, C. (2014, July 18–22). LEAP: A tool for the parametrized verification of concurrent datatypes. Lecture Notes in Computer Science [Computer aided verification, cav 2014]. 26th International Conference on Computer Aided Verification (CAV) held as part of the Vienna Summer of Logic (VSL). Vienna University of Technology.
  • Schott-Verdugo, S., & Gohlke, H. (2019). PACKMOL-memgen: A simple-to-use, generalized workflow for membrane-protein–lipid-bilayer system building. Journal of Chemical Information and Modeling, 59(6), 2522–2528. https://doi.org/10.1021/acs.jcim.9b00269
  • Shen, M. H., Wei, Y., Kim, H., Wan, L. L., Jiang, Y. Z., Hang, X., Raba, M., Remiszewski, S., Rowicki, M., Wu, C. G., Wu, S. Y., Zhang, L. J., Lu, X., Yuan, M., Smith, H. A., Zheng, A. P., Bertino, J., Jin, J. F., Xing, Y. N., Shao, Z. M., & Kang, Y. B. (2021). Small-molecule inhibitors that disrupt the MTDH-SND1 complex suppress breast cancer progression and metastasis. Nature Cancer, 3(1), 43–59. https://doi.org/10.1038/s43018-021-00279-5
  • Singh, M. K., & Dominy, B. N. (2010). Thermodynamic resolution: How do errors in modeled protein structures affect binding affinity predictions? Proteins, 78(7), 1613–1617. https://doi.org/10.1002/prot.22691
  • Srinivasan, J., Cheatham, T. E., Cieplak, P., Kollman, P. A., & Case, D. A. (1998a). Continuum solvent studies of the stability of DNA, RNA, and phosphoramidate – DNA helices. Journal of the American Chemical Society, 120(37), 9401–9409. https://doi.org/10.1021/ja981844
  • Srinivasan, J., Miller, J., Kollman, P. A., & Case, D. A. (1998b). Continuum solvent studies of the stability of RNA hairpin loops and helices. Journal of Biomolecular Structure & Dynamics, 16(3), 671–682. https://doi.org/10.1021/ja981844
  • Tao, H., Zhang, Y., & Huang, S.-Y. (2020). Improving protein–peptide docking results via pose-clustering and rescoring with a combined knowledge-based and MM–GBSA scoring function. Journal of Chemical Information and Modeling, 60(4), 2377–2387. https://doi.org/10.1021/acs.jcim.0c00058
  • Tian, C., Kasavajhala, K., Belfon, K. A. A., Raguette, L., Huang, H., Migues, A. N., Bickel, J., Wang, Y. Z., Pincay, J., Wu, Q., & Simmerling, C. (2020). ff19SB: Amino-acid-specific protein backbone parameters trained against quantum mechanics energy surfaces in solution. Journal of Chemical Theory and Computation, 16(1), 528–552. https://doi.org/10.1021/acs.jctc.9b00591
  • Todd, B. D., & Daivis, P. J. (1998). Nonequilibrium molecular dynamics simulations of planar elongational flow with spatially and temporally periodic boundary conditions. Physical Review Letters, 81(5), 1118–1121. https://doi.org/10.1103/PhysRevLett.81.1118
  • Wang, E., Sun, H., Wang, J., Wang, Z., Liu, H., Zhang, J. Z., & Hou, T. (2019). End-point binding free energy calculation with MM/PBSA and MM/GBSA: Strategies and applications in drug design. Chemical Reviews, 119(16), 9478–9508. https://doi.org/10.1021/acs.chemrev.9b00055
  • Wan, L. L., & Kang, Y. B. (2013). Pleiotropic roles of AEG-1/MTDH/LYRIC in breast cancer. In D. Sarkar & P. B. Fisher (Eds.), Aeg-1/Mtdh/Lyric implicated in multiple human cancers. Advances in Cancer Research, 120, 113–134. https://doi.org/10.1016/b978-0-12-401676-7.00004-8
  • Wan, L. L., Lu, X., Yuan, S., Wei, Y., Guo, F., Shen, M. H., Yuan, M., Chakrabarti, R., Hua, Y. L., Smith, H. A., Blanco, M. A., Chekmareva, M., Wu, H., Bronson, R. T., Haffty, B. G., Xing, Y. N., & Kang, Y. B. (2014). MTDH-SND1 interaction is crucial for expansion and activity of tumor-initiating cells in diverse oncogene- and carcinogen-induced mammary tumors. Cancer Cell, 26(1), 92–105. https://doi.org/10.1016/j.ccr.2014.04.027
  • Yan, L. M., Sun, C., & Liu, H. T. (2013). Opposite phenomenon to the flying ice cube in molecular dynamics simulations of flexible TIP3P water. Advances in Manufacturing, 1(2), 160–165. https://doi.org/10.1007/s40436-013-0024-3
  • Zhang, Y. J., Ding, J. N., Feng, T. T., & Han, J. G. (2015). Exploring interaction mechanisms of the inhibitor binding to the VP35 IID region of Ebola virus by all atom molecular dynamics simulation method. Proteins, 83(12), 2263–2278. https://doi.org/10.1002/prot.24945

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.