238
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Comprehensive bioinformatics analysis of structural and functional consequences of deleterious missense mutations in the human QDPR gene

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , , , ORCID Icon & ORCID Icon show all
Pages 5485-5501 | Received 29 Mar 2023, Accepted 12 Jun 2023, Published online: 29 Jun 2023

References

  • Abdalla, M., & Rabie, A. M. (2023). Dual computational and biological assessment of some promising nucleoside analogs against the COVID-19-Omicron variant. Computational Biology and Chemistry. 104, 107768. https://doi.org/10.1016/j.compbiolchem.2022.107768
  • Abdalla, M., Eltayb, W. A., El-Arabey, A. A., Singh, K., & Jiang, X. (2022). Molecular dynamic study of SARS-CoV-2 with various S protein mutations and their effect on thermodynamic properties. Computers in Biology and Medicine. 141, 105025. https://doi.org/10.1016/j.compbiomed.2021.105025
  • Adzhubei, I. A., Schmidt, S., Peshkin, L., Ramensky, V. E., Gerasimova, A., Bork, P., Kondrashov, A. S., & Sunyaev, S. R. (2010). A method and server for predicting damaging missense mutations. Nature Methods, 7(4), 248–249. https://doi.org/10.1038/nmeth0410-248
  • Ashkenazy, H., Abadi, S., Martz, E., Chay, O., Mayrose, I., Pupko, T., & Ben-Tal, N. (2016). ConSurf 2016: An improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Research, 44(W1), W344–W350. https://doi.org/10.1093/nar/gkw408
  • Bateman, A., Martin, M.-J., Orchard, S., Magrane, M., Agivetova, R., Ahmad, S., Alpi, E., Bowler-Barnett, E. H., Britto, R., Bursteinas, B., Bye-A-Jee, H., Coetzee, R., Cukura, A., Da Silva, A., Denny, P., Dogan, T., Ebenezer, T., Fan, J., Castro, L. G., … Teodoro, D. (2021). UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Research, 49(D1), D480–D489. https://doi.org/10.1093/nar/gkaa1100
  • Bendall, J. K., Douglas, G., McNeill, E., Channon, K. M., & Crabtree, M. J. (2014). Tetrahydrobiopterin in cardiovascular health and disease. Antioxidants and Redox Signaling, 20(18), 3040–3077. https://doi.org/10.1089/ars.2013.5566
  • Bendl, J., Stourac, J., Salanda, O., Pavelka, A., Wieben, E. D., Zendulka, J., Brezovsky, J., & Damborsky, J. (2014). PredictSNP: Robust and accurate consensus classifier for prediction of disease-related mutations. PLoS Computational Biology, 10(1), e1003440. https://doi.org/10.1371/journal.pcbi.1003440
  • Berezin, C., Glaser, F., Rosenberg, J., Paz, I., Pupko, T., Fariselli, P., Casadio, R., & Ben-Tal, N. (2004). ConSeq: The identification of functionally and structurally important residues in protein sequences. Bioinformatics, 20(8), 1322–1324. https://doi.org/10.1093/bioinformatics/bth070
  • Brennenstuhl, H., Jung-Klawitter, S., Assmann, B., & Opladen, T. (2019). Inherited disorders of neurotransmitters: classification and practical approaches for diagnosis and treatment. Neuropediatrics, 50(1), 2–14. https://doi.org/10.1055/s-0038-1673630
  • Breuer, M., Guglielmi, L., Zielonka, M., Hemberger, V., Kölker, S., Okun, J. G., Hoffmann, G. F., Carl, M., Sauer, S. W., & Opladen, T. (2019). QDPR homologues in Danio rerio regulate melanin synthesis, early gliogenesis, and glutamine homeostasis. PLoS One. 14(4), e0215162. https://doi.org/10.1371/journal.pone.0215162
  • Bromberg, Y., & Rost, B. (2007). SNAP: Predict effect of non-synonymous polymorphisms on function. Nucleic Acids Research. 35(11), 3823–3835. https://doi.org/10.1093/nar/gkm238
  • Capriotti, E., & Altman, R. B. (2011). A new disease-specific machine learning approach for the prediction of cancer-causing missense variants. Genomics, 98(4), 310–317. pp. Oct https://doi.org/10.1016/J.YGENO.2011.06.010
  • Capriotti, E., Altman, R. B., & Bromberg, Y. (2013). Collective judgment predicts disease-associated single nucleotide variants. BMC Genomics. 14(Suppl 3), S2. https://doi.org/10.1186/1471-2164-14-S3-S2
  • Capriotti, E., Calabrese, R., & Casadio, R. (2006). Predicting the insurgence of human genetic diseases associated to single point protein mutations with support vector machines and evolutionary information. Bioinformatics, 22(22), 2729–2734. https://doi.org/10.1093/bioinformatics/btl423
  • Capriotti, E., Calabrese, R., Fariselli, P., Martelli, P. L., Altman, R. B., & Casadio, R. (2013). WS-SNPs&GO: A web server for predicting the deleterious effect of human protein variants using functional annotation. BMC Genomics. 14(Suppl 3), S6. https://doi.org/10.1186/1471-2164-14-S3-S6
  • Capriotti, E., Fariselli, P., & Casadio, R. (2005). I-Mutant2.0: Predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Research. 33(Web Server), W306–W310. https://doi.org/10.1093/nar/gki375
  • Chen, C. W., Lin, J., & Chu, Y. W. (2013). iStable: Off-the-shelf predictor integration for predicting protein stability changes. BMC Bioinformatics, 14(S2) https://doi.org/10.1186/1471-2105-14-S2-S5
  • Cheng, J., Randall, A., & Baldi, P. (2005). Prediction of protein stability changes for single-site mutations using support vector machines. Proteins: Structure, Function, and Bioinformatics, 62(4), 1125–1132. https://doi.org/10.1002/prot.20810
  • Choi, Y., & Chan, A. P. (2015). PROVEAN web server: A tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics, 31(16), 2745–2747. https://doi.org/10.1093/bioinformatics/btv195
  • Coughlin, C. R., Hyland, K., Randall, R., & Ficicioglu, C. (2013). Dihydropteridine reductase deficiency and treatment with tetrahydrobiopterin: A case report, JIMD Reports, 10, 53-56. https://doi.org/10.1007/8904_2012_202
  • Cronin, S. J. F., Seehus, C., Weidinger, A., Talbot, S., Reissig, S., Seifert, M., Pierson, Y., McNeill, E., Longhi, M. S., Turnes, B. L., Kreslavsky, T., Kogler, M., Hoffmann, D., Ticevic, M., da Luz Scheffer, D., Tortola, L., Cikes, D., Jais, A., Rangachari, M., … Penninger, J. M. (2018). The metabolite BH4 controls T cell proliferation in autoimmunity and cancer. Nature, 563(7732), 564–568. https://doi.org/10.1038/s41586-018-0701-2
  • Dash, R., Ali, M. C., Rana, M. L., Munni, Y. A., Barua, L., Jahan, I., Haque, M. F., Hannan, M. A., & Moon, I. S. (2020). Computational SNP analysis and molecular simulation revealed the most deleterious missense variants in the NBD1 domain of human ABCA1 transporter. International Journal of Molecular Sciences, 21(20), 7606. https://doi.org/10.3390/ijms21207606
  • Dash, R., Arifuzzaman, M., Mitra, S., Abdul Hannan, M., Absar, N., & Hosen, S. M. Z. (2019). Unveiling the structural insights into the selective inhibition of protein kinase D1. Current Pharmaceutical Design, 25(10), 1059–1074. https://doi.org/10.2174/1381612825666190527095510
  • Edgar, R. C. (2004). MUSCLE: A multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics, 5(1), 113. https://doi.org/10.1186/1471-2105-5-113/FIGURES/16
  • Eltayb, W. A., Abdalla, M., & Rabie, A. M. (2023). Novel investigational anti-SARS-CoV-2 agent Ensitrelvir ‘S-217622’: A very promising potential universal broad-spectrum antiviral at the therapeutic frontline of coronavirus species. ACS Omega. 8(6), 5234–5246. https://doi.org/10.1021/acsomega.2c03881
  • Eltayb, W. A., et al. (2023). Exploring particulate methane monooxygenase (pMMO) proteins using experimentation and computational molecular docking. Journal of King Saud University-Science, 35(4),  102634. https://doi.org/10.1016/j.jksus.2023.102634
  • Fariselli, P., Martelli, P. L., Savojardo, C., & Casadio, R. (2015). INPS: Predicting the impact of non-synonymous variations on protein stability from sequence. Bioinformatics (Oxford, England), 31(17), 2816–2821. https://doi.org/10.1093/BIOINFORMATICS/BTV291
  • Fu, S., Wang, K., Ma, T., Liang, Y., Ma, Z., Wu, J., Xu, Y., & Zhou, X. (2022). An evolutionarily conserved C4HC3-type E3 ligase regulates plant broad-spectrum resistance against pathogens. The Plant Cell, 34(5), 1822–1843. https://doi.org/10.1093/plcell/koac055
  • George Priya Doss, C., Nagasundaram, N., Chakraborty, C., Chen, L., & Zhu, H. (2013). Extrapolating the effect of deleterious nsSNPs in the binding adaptability of flavopiridol with CDK7 protein: A molecular dynamics approach. Human Genomics, 7. https://doi.org/10.1186/1479-7364-7-10
  • Ghosh, R., Chakraborty, A., Biswas, A., & Chowdhuri, S. (2021). Evaluation of green tea polyphenols as novel corona virus (SARS CoV-2) main protease (Mpro) inhibitors–an in silico docking and molecular dynamics simulation study. Journal of Biomolecular Structure and Dynamics, 39(12), 4362-4374. https://doi.org/10.1080/07391102.2020.1779818
  • Gross, S. S., & Levi, R. (1992). Tetrahydrobiopterin synthesis. An absolute requirement for cytokine- induced nitric oxide generation by vascular smooth muscle. Journal of Biological Chemistry, 267(36), 25722–25729. https://doi.org/10.1016/s0021-9258(18)35667-9
  • Hess, B., Kutzner, C., van der Spoel, D., & Lindahl, E. (2008). GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of Chemical Theory and Computation, 4(3), 435–447. https://doi.org/10.1021/ct700301q
  • Himmelreich, N., Blau, N., & Thöny, B. (2021). Molecular and metabolic bases of tetrahydrobiopterin (BH4) deficiencies. Molecular Genetics and Metabolism, 133(2), 123–136. https://doi.org/10.1016/j.ymgme.2021.04.003
  • Jäggi, L., Zurflüh, M. R., Schuler, A., Ponzone, A., Porta, F., Fiori, L., Giovannini, M., Santer, R., Hoffmann, G. F., Ibel, H., Wendel, U., Ballhausen, D., Baumgartner, M. R., & Blau, N. (2008). Outcome and long-term follow-up of 36 patients with tetrahydrobiopterin deficiency. Molecular Genetics and Metabolism. 93(3), 295–305. https://doi.org/10.1016/j.ymgme.2007.10.004
  • Jensen, L. J., Kuhn, M., Stark, M., Chaffron, S., Creevey, C., Muller, J., Doerks, T., Julien, P., Roth, A., Simonovic, M., Bork, P., & von Mering, C. (2009). STRING 8 - A global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Research. 37(Database), D412–D416. https://doi.org/10.1093/nar/gkn760
  • Kamaraj, B., Rajendran, V., Sethumadhavan, R., & Purohit, R. (2013). In-silico screening of cancer associated mutation on PLK1 protein and its structural consequences. Journal of Molecular Modeling, 19(12), 5587–5599. https://doi.org/10.1007/s00894-013-2044-0
  • Kapatos, G. (2013). The neurobiology of tetrahydrobiopterin biosynthesis: A model for regulation of GTP cyclohydrolase i gene transcription within nigrostriatal dopamine neurons. IUBMB Life, 65(4), 323–333. https://doi.org/10.1002/iub.1140
  • Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol Biol Evol,.30(4), 772–780. https://doi.org/10.1093/molbev/mst010
  • Kim, H., Kim, K., & Yim, J. (2013). Biosynthesis of drosopterins, the red eye pigments of Drosophila melanogaster. IUBMB Life, 65(4), 334–340. https://doi.org/10.1002/iub.1145
  • Kumar, B., Parasuraman, P., Murthy, T. P. K., Murahari, M., & Chandramohan, V. (2022). In silico screening of therapeutic potentials from Strychnos nux-vomica against the dimeric main protease (Mpro) structure of SARS-CoV-2. Journal of Biomolecular Structure and Dynamics. 40(17), 7796–7814. https://doi.org/10.1080/07391102.2021.1902394
  • Kumar, S. B., Krishna, S., Pradeep, S., Mathews, D. E., Pattabiraman, R., Murahari, M., & Murthy, T. K. (2021). Screening of natural compounds from Cyperus rotundus Linn against SARS-CoV-2 main protease (Mpro): An integrated computational approach. Computers in Biology and Medicine. 134, 104524. https://doi.org/10.1016/j.compbiomed.2021.104524
  • Laimer, J., Hiebl-Flach, J., Lengauer, D., & Lackner, P. (2016). MAESTROweb: A web server for structure-based protein stability prediction. Bioinformatics, 32(9), 1414–1416. https://doi.org/10.1093/bioinformatics/btv769
  • Latremoliere, A., Latini, A., Andrews, N., Cronin, S. J., Fujita, M., Gorska, K., Hovius, R., Romero, C., Chuaiphichai, S., Painter, M., Miracca, G., Babaniyi, O., Remor, A. P., Duong, K., Riva, P., Barrett, L. B., Ferreirós, N., Naylor, A., Penninger, J. M., … Woolf, C. J. (2015). Reduction of neuropathic and inflammatory pain through inhibition of the tetrahydrobiopterin pathway. Neuron, 86(6), 1393–1406. https://doi.org/10.1016/j.neuron.2015.05.033
  • Lobanov, M. Y., Bogatyreva, N. S., & Galzitskaya, O. V. (2008). Radius of gyration as an indicator of protein structure compactness. Molecular Biology, 42(4), 623–628. https://doi.org/10.1134/S0026893308040195
  • López-Ferrando, V., Gazzo, A., de La Cruz, X., Orozco, M., & Gelpí, J. L. (2017). PMut: A web-based tool for the annotation of pathological variants on proteins, 2017 update. Nucleic Acids Research, 45(W1), W222–W228. https://doi.org/10.1093/nar/gkx313
  • Ma, J., Li, Q., Shao, J., Ma, Y., Lin, Z., Kang, H., & Chen, B. (2019). Central nervous system involvement in patients with diffuse large B cell lymphoma: Analysis of the risk factors and prognosis from a single-center retrospective cohort study. Cancer Management and Research, 11, 10175–10185. https://doi.org/10.2147/CMAR.S225372
  • Mahmud, S., Uddin, M. A. R., Zaman, M., Sujon, K. M., Rahman, M. E., Shehab, M. N., Islam, A., Alom, M. W., Amin, A., Akash, A. S., & Saleh, M. A. (2021). Molecular docking and dynamics study of natural compound for potential inhibition of main protease of SARS-CoV-2. Journal of Biomolecular Structure and Dynamics. 39(16), 6281–6289. https://doi.org/10.1080/07391102.2020.1796808
  • Murthy, T. P. K., Shukla, R., Durga Prasad, N., Swetha, P., Shreyas, S., Singh, T. R., Pattabiraman, R., Nair, S. S., Mathew, B. B., & Kumar, K. M. (2023). Comprehensive analysis of non-synonymous missense SNPs of human galactose mutarotase (GALM) gene: An integrated computational approach. Comprehensive Analysis of Non-Synonymous Missense SNPs of Human Galactose Mutarotase (GALM) Gene: An Integrated Computational Approach, 1–15., https://doi.org/10.1080/07391102.2022.2160813
  • Navapour, L., & Mogharrab, N. (2021). In silico screening and analysis of nonsynonymous SNPs in human CYP1A2 to assess possible associations with pathogenicity and cancer susceptibility. Scientific Reports, 11. https://doi.org/10.1038/s41598-021-83696-x
  • Ng, P. C., & Henikoff, S. (2003). SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Research. 31(13), 3812–3814. https://doi.org/10.1093/nar/gkg509
  • Notredame, C., Higgins, D. G., & Heringa, J. (2000). T-coffee: A novel method for fast and accurate multiple sequence alignment. Journal of Molecular Biology, 302(1), 205–217. https://doi.org/10.1006/JMBI.2000.4042
  • Opladen, T., Hoffmann, G. F., & Blau, N. (2012). An international survey of patients with tetrahydrobiopterin deficiencies presenting with hyperphenylalaninaemia. Journal of Inherited Metabolic Disease, 35(6), 963–973. https://doi.org/10.1007/s10545-012-9506-x
  • Opladen, T., López-Laso, E., Cortès-Saladelafont, E., Pearson, T. S., Sivri, H. S., Yildiz, Y., Assmann, B., Kurian, M. A., Leuzzi, V., Heales, S., Pope, S., Porta, F., García-Cazorla, A., Honzík, T., Pons, R., Regal, L., Goez, H., Artuch, R., Hoffmann, G. F., Kuseyri Hübschmann, O, on behalf of the International Working Group on Neurotransmitter related Disorders (iNTD). (2020). Consensus guideline for the diagnosis and treatment of tetrahydrobiopterin (BH4) deficiencies. Orphanet Journal of Rare Diseases, 15. https://doi.org/10.1186/s13023-020-01379-8
  • Pace, C. N., Fu, H., Lee Fryar, K., Landua, J., Trevino, S. R., Schell, D., Thurlkill, R. L., Imura, S., Scholtz, J. M., Gajiwala, K., Sevcik, J., Urbanikova, L., Myers, J. K., Takano, K., Hebert, E. J., Shirley, B. A., & Grimsley, G. R. (2014). Contribution of hydrogen bonds to protein stability. Protein Science, 23(5), 652–661. https://doi.org/10.1002/pro.2449
  • Parthiban, V., Gromiha, M. M., & Schomburg, D. (2006). CUPSAT: Prediction of protein stability upon point mutations. Nucleic Acids Research. 34(Web Server), W239–W242. https://doi.org/10.1093/nar/gkl190
  • Pavithran, H., & Kumavath, R. (2021). In silico analysis of nsSNPs in CYP19A1 gene affecting breast cancer associated aromatase enzyme. Journal of Genetics, 100. https://doi.org/10.1007/s12041-021-01274-6
  • Petersen, B., Petersen, T. N., Andersen, P., Nielsen, M., & Lundegaard, C. (2009). A generic method for assignment of reliability scores applied to solvent accessibility predictions. BMC Structural Biology, 9. https://doi.org/10.1186/1472-6807-9-51
  • Pires, D. E. V., Ascher, D. B., & Blundell, T. L. (2014). DUET: A server for predicting effects of mutations on protein stability using an integrated computational approach. Nucleic Acids Research. 42(W1), W314–W319. https://doi.org/10.1093/nar/gku411
  • Ponzone, A., Spada, M., Ferraris, S., Dianzani, I., & de Sanctis, L. (2004). Dihydropteridine reductase deficiency in man: from biology to treatment. Medicinal Research Reviews, 24(2), 127–150. https://doi.org/10.1002/med.10055
  • Reva, B., Antipin, Y., & Sander, C. (2011). Predicting the functional impact of protein mutations: Application to cancer genomics. Nucleic Acids Research, 39(17), e118–e118. https://doi.org/10.1093/nar/gkr407
  • Rodrigues, C. H. M., Pires, D. E. V., & Ascher, D. B. (2018). DynaMut: Predicting the impact of mutations on protein conformation, flexibility and stability. Nucleic Acids Research, 46(W1), W350–W355. https://doi.org/10.1093/nar/gky300
  • Rodrigues, C. H., Pires, D. E., Ascher, D. B., David Ascher, C. B., & Unimelb, E. (2021). DynaMut2: Assessing changes in stability and flexibility upon single and multiple point missense mutations. Protein Science : a Publication of the Protein Society, 30(1), 60–69. https://doi.org/10.1002/PRO.3942
  • Rogers, M. F., Shihab, H. A., Gaunt, T. R., & Campbell, C. (2017). CScape: A tool for predicting oncogenic single-point mutations in the cancer genome. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-11746-4
  • Romeo, A., Iacovelli, F., & Falconi, M. (2020). Targeting the SARS-CoV-2 spike glycoprotein prefusion conformation: Virtual screening and molecular dynamics simulations applied to the identification of potential fusion inhibitors. Virus Res, 286, 198068. https://doi.org/10.1016/j.virusres.2020.198068
  • Rozario, L. T., Sharker, T., & Nila, T. A. (2021). In silico analysis of deleterious SNPs of human MTUS1 gene and their impacts on subsequent protein structure and function. PLoS One. 16(6), e0252932. https://doi.org/10.1371/journal.pone.0252932
  • Saxena, S., Achyuth B, S., Murthy, T. P. K., Chandramohan, V., Yadav, A. K., & Singh, T. R. (2021). Structural and functional analysis of disease-associated mutations in GOT1 gene: An in silico study. Computers in Biology and Medicine, 136, 104695. https://doi.org/10.1016/J.COMPBIOMED.2021.104695
  • Saxena, S., Krishna Murthy, T. P., Chandrashekhar, C. R., Patil, L. S., Aditya, A., Shukla, R., Yadav, A. K., Singh, T. R., Samantaray, M., & Ramaswamy, A. (2022). A bioinformatics approach to the identification of novel deleterious mutations of human TPMT through validated screening and molecular dynamics. Scientific Reports, 12(1), 1–21. https://doi.org/10.1038/s41598-022-23488-z
  • Saxena, S., Murthy, T. P. K., Chandramohan, V., Achyuth, S., Maansi, M., Das, P., Sineagha, V., & Prakash, S. (2022). In-silico analysis of deleterious single nucleotide polymorphisms of PNMT gene. Molecular Simulation. 48(16), 1411–1425. https://doi.org/10.1080/08927022.2022.2094922/SUPPL_FILE/GMOS_A_2094922_SM0366.DOCX
  • Schnetz-Boutaud, N. C., Anderson, B. M., Brown, K. D., Wright, H. H., Abramson, R. K., Cuccaro, M. L., Gilbert, J. R., Pericak-Vance, M. A., & Haines, J. L. (2009). Examination of tetrahydrobiopterin pathway genes in autism. Genes, Brain and Behavior, 8(8), 753–757. https://doi.org/10.1111/j.1601-183X.2009.00521.x
  • Sharma, P., Joshi, T., Joshi, T., Chandra, S., & Tamta, S. (2021). Molecular dynamics simulation for screening phytochemicals as α-amylase inhibitors from medicinal plants. Journal of Biomolecular Structure and Dynamics. 39(17), 6524–6538. https://doi.org/10.1080/07391102.2020.1801507
  • Sherry, S. T. (2001). DbSNP: The NCBI database of genetic variation. Nucleic Acids Research, 29(1), 308–311. https://doi.org/10.1093/nar/29.1.308
  • Shihab, H. A., Gough, J., Cooper, D. N., Stenson, P. D., Barker, G. L. A., Edwards, K. J., Day, I. N. M., & Gaunt, T. R. (2013). Predicting the functional, molecular, and phenotypic consequences of amino acid substitutions using hidden Markov models. Human Mutation, 34(1), 57–65. pp. Jan https://doi.org/10.1002/HUMU.22225
  • Sievers, F., & Higgins, D. G. (2014). Clustal omega, accurate alignment of very large numbers of sequences. Methods in Molecular Biology, 1079, 105–116. https://doi.org/10.1007/978-1-62703-646-7_6/COVER
  • Strub, C., Alies, C., Lougarre, A., Ladurantie, C., Czaplicki, J., & Fournier, D. (2004). Mutation of exposed hydrophobic amino acids to arginine to increase protein stability. BMC Biochemistry, 5(1), 9. https://doi.org/10.1186/1471-2091-5-9
  • Su, Y., Varughese, K. I., Xuong, N. H., Bray, T. L., Roche, D. J., & Whiteley, J. M. (1993). The crystallographic structure of a human dihydropteridine reductase NADH binary complex expressed in Escherichia coli by a cDNA constructed from its rat homologue. Journal of Biological Chemistry, 268(36), 26836–26841. and https://doi.org/10.1016/s0021-9258(19)74187-8
  • Szklarczyk, D., et al. (2019). STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Research. 47(D1), D607–D613. https://doi.org/10.1093/nar/gky1131
  • Thomas, P. D., Campbell, M. J., Kejariwal, A., Mi, H., Karlak, B., Daverman, R., Diemer, K., Muruganujan, A., & Narechania, A. (2003). PANTHER: A library of protein families and subfamilies indexed by function. Genome Research, 13(9), 2129–2141. https://doi.org/10.1101/gr.772403
  • Thöny, B., Auerbach, G., & Blau, N. (2000). Tetrahydrobiopterin biosynthesis, regeneration and functions. Biochemical Journal, 347(1), 1–16. https://doi.org/10.1042/0264-6021:3470001
  • Varughese, K. I., Skinner, M. M., Whiteley, J. M., Matthews, D. A., & Xuong, N. H. (1992). Crystal structure of rat liver dihydropteridine reductase. Proceedings of the National Academy of Sciences, 89(13), 6080–6084. https://doi.org/10.1073/pnas.89.13.6080
  • Vásquez-Vivar, J., Kalyanaraman, B., Martásek, P., Hogg, N., Masters, B. S. S., Karoui, H., Tordo, P., & Pritchard, K. A. (1998). Superoxide generation by endothelial nitric oxide synthase: The influence of cofactors. Proceedings of the National Academy of Sciences, 95(16), 9220–9225. https://doi.org/10.1073/pnas.95.16.9220
  • Werner, E. R., Blau, N., & Thöny, B. (2011). Tetrahydrobiopterin: Biochemistry and pathophysiology. Biochemical Journal, 438(3), 397–414. https://doi.org/10.1042/BJ20110293
  • Xu, F., Sudo, Y., Sanechika, S., Yamashita, J., Shimaguchi, S., Honda, S-i., Sumi-Ichinose, C., Mori-Kojima, M., Nakata, R., Furuta, T., Sakurai, M., Sugimoto, M., Soga, T., Kondo, K., & Ichinose, H. (2014). Disturbed biopterin and folate metabolism in the Qdpr-deficient mouse. FEBS Letters, 588(21), 3924–3931. https://doi.org/10.1016/j.febslet.2014.09.004
  • Xu-Monette, Z. Y., Deng, Q., Manyam, G. C., Tzankov, A., Li, L., Xia, Y., Wang, X-x., Zou, D., Visco, C., Dybkær, K., Li, J., Zhang, L., Liang, H., Montes-Moreno, S., Chiu, A., Orazi, A., Zu, Y., Bhagat, G., Richards, K. L., … Young, K. H. (2016). Clinical and biologic significance of MYC genetic mutations in de novo diffuse large B-cell lymphoma. Clinical Cancer Research, 22(14), 3593–3605. https://doi.org/10.1158/1078-0432.CCR-15-2296
  • Yates, C. M., Filippis, I., Kelley, L. A., & Sternberg, M. J. E. (2014). SuSPect: Enhanced prediction of single amino acid variant (SAV) phenotype using network features. Journal of Molecular Biology. 426(14), 2692–2701. https://doi.org/10.1016/j.jmb.2014.04.026
  • Ziegler, I., McDonaldo, T., Hesslinger, C., Pelletier, I., & Boyle, P. (2000). Development of the pteridine pathway in the zebrafish, Danio rerio. Journal of Biological Chemistry, 275(25), 18926–18932. https://doi.org/10.1074/jbc.M910307199

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.