132
Views
13
CrossRef citations to date
0
Altmetric
Research Articles

Cellulose nanocrystals derived from chicory plant: an un-competitive inhibitor of aromatase in breast cancer cells via PI3K/AKT/mTOP signalling pathway

, , , &
Pages 5575-5589 | Received 17 Feb 2023, Accepted 13 Jun 2023, Published online: 20 Jun 2023

References

  • Abitbol, T., Rivkin, A., Cao, Y., Nevo, Y., Abraham, E., Ben-Shalom, T., Lapidot, S., & Shoseyov, O. (2016). Nanocellulose, a tiny fiber with huge applications. Current Opinion in Biotechnology, 39, 76–88. https://doi.org/10.1016/j.copbio.2016.01.002
  • Abu-Danso, E., Srivastava, V., Sillanpää, M., & Bhatnagar, A. (2017). Pretreatment assisted synthesis and characterization of cellulose nanocrystals and cellulose nanofibers from absorbent cotton. International Journal of Biological Macromolecules, 102, 248–257. https://doi.org/10.1016/j.ijbiomac.2017.03.172
  • Alhazmi, H. A., Nasib, A. A. B., Musleh, Y. A., Hijri, K. Q., Ur Rehman, Z., Khuwaja, G., Al-Bratty, M., Javed, S. A., & Arbab, I. A. (2020). Application of drug–metal ion interaction principle in conductometric determination of imatinib, sorafenib, gefitinib and bosutinib. Open Chemistry, 18(1), 798–807. https://doi.org/10.1515/chem-2020-0123
  • Aprilia, N. S., Asniza, M., Owolabi, F., Rizal, S., Syakir, M., Paridah, M., Kumar, U. S. U., Nasrullah, R., Haafiz, M., & Khalil, H. A. (2018). Role of dispersion time on the properties of enzymatic-treated bamboo cellulose nanofibers. Materials Research Express, 5(10), 105014. https://doi.org/10.1088/2053-1591/aadaca
  • Assaran Darban, R., Shareghi, B., Asoodeh, A., & Chamani, J. (2017). Multi-spectroscopic and molecular modeling studies of interaction between two different angiotensin I converting enzyme inhibitory peptides from gluten hydrolysate and human serum albumin. Journal of Biomolecular Structure & Dynamics, 35(16), 3648–3662. https://doi.org/10.1080/07391102.2016.1264892
  • Bauer, A. W., Kirby, W. M., Sherris, J. C., & Turck, M. (1966). Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology, 45(4), 493–496. https://doi.org/10.1093/ajcp/45.4_ts.493
  • Brueggemeier, R. W., Hackett, J. C., & Diaz-Cruz, E. S. (2005). Aromatase inhibitors in the treatment of breast cancer. Endocrine Reviews, 26(3), 331–345. https://doi.org/10.1210/er.2004-0015
  • Chamizo-González, F., Estévez, I. G., Gordillo, B., Manjón, E., Escribano-Bailón, M. T., Heredia, F. J., & González-Miret, M. L. (2023). First insights into the binding mechanism and colour effect of the interaction of grape seed 11S globulin with malvidin 3-O-glucoside by fluorescence spectroscopy, differential colorimetry and molecular modeling. Food Chemistry, 413, 135591. https://doi.org/10.1016/j.foodchem.2023.135591
  • Chanphai, P., Ouellette, V., Bérubé, G., & Tajmir-Riahi, H. (2018). Conjugation of testo and testo-Pt (II) with serum proteins: Loading efficacy and protein conformation. International Journal of Biological Macromolecules, 118(Pt A), 1112–1119. https://doi.org/10.1016/j.ijbiomac.2018.06.186
  • Cheng, M., Hu, J., Xia, J., Liu, Q., Wei, T., Ling, Y., Li, W., & Liu, B. (2022). One-step in-situ green synthesis of cellulose nanocrystal aerogel based shape stable phase change material. Chemical Engineering Journal, 431, 133935. https://doi.org/10.1016/j.cej.2021.133935
  • Coelho, C. C., Michelin, M., Cerqueira, M. A., Gonçalves, C., Tonon, R. V., Pastrana, L. M., Freitas-Silva, O., Vicente, A. A., Cabral, L. M., & Teixeira, J. A. (2018). Cellulose nanocrystals from grape pomace: Production, properties and cytotoxicity assessment. Carbohydrate Polymers, 192, 327–336. https://doi.org/10.1016/j.carbpol.2018.03.023
  • de Oliveira, F. B., Bras, J., Pimenta, M. T. B., da Silva Curvelo, A. A., & Belgacem, M. N. (2016). Production of cellulose nanocrystals from sugarcane bagasse fibers and pith. Industrial Crops and Products, 93, 48–57. https://doi.org/10.1016/j.indcrop.2016.04.064
  • de Oliveira, J. P., Bruni, G. P., Lima, K. O., El Halal, S. L. M., da Rosa, G. S., Dias, A. R. G., & da Rosa Zavareze, E. (2017). Cellulose fibers extracted from rice and oat husks and their application in hydrogel. Food Chemistry, 221, 153–160. https://doi.org/10.1016/j.foodchem.2016.10.048
  • Ebbensgaard, A., Mordhorst, H., Overgaard, M. T., Nielsen, C. G., Aarestrup, F. M., & Hansen, E. B. (2015). Comparative evaluation of the antimicrobial activity of different antimicrobial peptides against a range of pathogenic bacteria. PloS One, 10(12), e0144611. https://doi.org/10.1371/journal.pone.0144611
  • El Achaby, M., El Miri, N., Hannache, H., Gmouh, S., Ben Youcef, H., & Aboulkas, A. (2018). Production of cellulose nanocrystals from vine shoots and their use for the development of nanocomposite materials. International Journal of Biological Macromolecules, 117, 592–600. https://doi.org/10.1016/j.ijbiomac.2018.05.201
  • Elbachiri, M., Fatima, S., Bouchbika, Z., Benchekroun, N., Jouhadi, H., Tawfiq, N., Sahraoui, S., & Benider, A. (2017). Breast cancer in men: About 40 cases and literature review. The Pan African Medical Journal, 28, 287–287. https://doi.org/10.11604/pamj.2017.28.287.13527
  • Ferlay, J., Soerjomataram, I., Dikshit, R., Eser, S., Mathers, C., Rebelo, M., Parkin, D. M., Forman, D., & Bray, F. (2015). Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. International Journal of Cancer, 136(5), E359–E386. https://doi.org/10.1002/ijc.29210
  • García, A., Gandini, A., Labidi, J., Belgacem, N., & Bras, J. (2016). Industrial and crop wastes: A new source for nanocellulose biorefinery. Industrial Crops and Products, 93, 26–38. https://doi.org/10.1016/j.indcrop.2016.06.004
  • Ghahnaviyeh, L. A., Bagherian, R., Feizi, A., Afshari, A., & Darani, F. M. (2017). Illness perception and self-care behavior in patients with myocardial infarction. Bioscience Biotechnology Research Communications, 2, 33–38.
  • Group, E. B. C. T. C. (2015). Aromatase inhibitors versus tamoxifen in early breast cancer: Patient-level meta-analysis of the randomised trials. The Lancet, 386(10001), 1341–1352. https://doi.org/10.1016/S0140-6736(15)61074-1
  • Grube, B. J., Eng, E. T., Kao, Y.-C., Kwon, A., & Chen, S. (2001). White button mushroom phytochemicals inhibit aromatase activity and breast cancer cell proliferation. The Journal of Nutrition, 131(12), 3288–3293. https://doi.org/10.1093/jn/131.12.3288
  • Hazzah, H. A., Farid, R. M., Nasra, M. M., Hazzah, W. A., El-Massik, M. A., & Abdallah, O. Y. (2015). Gelucire-based nanoparticles for curcumin targeting to oral mucosa: Preparation, characterization, and antimicrobial activity assessment. Journal of Pharmaceutical Sciences, 104(11), 3913–3924. https://doi.org/10.1002/jps.24590
  • Hernández, J. A., Romero, V. H., Escalante, A., Toriz, G., Rojas, O. J., & Sulbarán, B. C. (2018). Agave tequilana bagasse as source of cellulose nanocrystals via organosolv treatment. BioResources, 13(2), 3603–3614. https://doi.org/10.15376/biores.13.2.3603-3614
  • Imchalee, N., Meesupthong, R., Torgbo, S., & Sukyai, P. (2021). Cellulose nanocrystals as sustainable material for enhanced painting efficiency of watercolor paint. Surfaces and Interfaces, 27, 101570. https://doi.org/10.1016/j.surfin.2021.101570
  • Jahanban-Esfahlan, A., Roufegarinejad, L., Tabibiazar, M., Lorenzo, J., & Amarowicz, R. (2021). Exploring the interactions between caffeic acid and human serum albumin using spectroscopic and molecular docking techniques. Polish Journal of Food and Nutrition Sciences, 71(1), 69–77. https://doi.org/10.31883/pjfns/133203
  • Jeong, H.-J., Shin, Y. G., Kim, I.-H., & Pezzuto, J. M. (1999). Inhibition of aromatase activity by flavonoids. Archives of Pharmacal Research, 22(3), 309–312. https://doi.org/10.1007/BF02976369
  • Jha, T., Adhikari, N., Halder, A. K., & Saha, A. (2015). Ligand-and structure-based drug design of non-steroidal aromatase inhibitors (NSAIs) in breast cancer. In Quantitative structure-activity relationships in drug design, predictive toxicology, and risk assessment (pp. 400–470). IGI Global. https://doi.org/10.4018/978-1-4666-8136-1.ch011
  • Jiang, F., & Hsieh, Y.-L. (2015). Cellulose nanocrystal isolation from tomato peels and assembled nanofibers. Carbohydrate Polymers, 122, 60–68. https://doi.org/10.1016/j.carbpol.2014.12.064
  • Kamelnia, E., Divsalar, A., Darroudi, M., Yaghmaei, P., & Sadri, K. (2020). Synthesis, 99mTc-radiolabeling, and biodistribution of new cellulose nanocrystals from Dorema kopetdaghens. International Journal of Biological Macromolecules, 146, 299–310. https://doi.org/10.1016/j.ijbiomac.2019.12.179
  • Kian, L., Saba, N., Jawaid, M., Alothman, O., & Fouad, H. (2020). Properties and characteristics of nanocrystalline cellulose isolated from olive fiber. Carbohydrate Polymers, 241, 116423. https://doi.org/10.1016/j.carbpol.2020.116423
  • Liehr, J. G. (2000). Is estradiol a genotoxic mutagenic carcinogen? Endocrine Reviews, 21(1), 40–54. https://doi.org/10.1210/er.21.1.40
  • Lu, P., & Hsieh, Y.-L. (2010). Preparation and properties of cellulose nanocrystals: Rods, spheres, and network. Carbohydrate Polymers, 82(2), 329–336. https://doi.org/10.1210/edrv.21.1.0386
  • Lu, Q., Nakmura, J., Savinov, A., Yue, W., Weisz, J., Dabbs, D. J., Wolz, G., & Brodie, A. (1996). Expression of aromatase protein and messenger ribonucleic acid in tumor epithelial cells and evidence of functional significance of locally produced estrogen in human breast cancers. Endocrinology, 137(7), 3061–3068. https://doi.org/10.1210/endo.137.7.8770932
  • Maaloul, N., Oulego, P., Rendueles, M., Ghorbal, A., & Diaz, M. (2021). Biopolymer composite from cellulose nanocrystals of almond (Prunus dulcis) shell as effective adsorbents for Cu2+ ions from aqueous solutions. Journal of Environmental Chemical Engineering, 9(2), 105139. https://doi.org/10.1016/j.jece.2021.105139
  • Makarska-Bialokoz, M. (2018). Interactions of hemin with bovine serum albumin and human hemoglobin: A fluorescence quenching study. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 193, 23–32. https://doi.org/10.1016/j.saa.2017.11.063
  • Man, Z., Muhammad, N., Sarwono, A., Bustam, M. A., Vignesh Kumar, M., & Rafiq, S. (2011). Preparation of cellulose nanocrystals using an ionic liquid. Journal of Polymers and the Environment, 19(3), 726–731. https://doi.org/10.1007/s10924-011-0323-3
  • Meyabadi, T. F., Dadashian, F., Sadeghi, G. M. M., & Asl, H. E. Z. (2014). Spherical cellulose nanoparticles preparation from waste cotton using a green method. Powder Technology, 261, 232–240. https://doi.org/10.1016/j.powtec.2014.04.039
  • Mills, J. N., Rutkovsky, A. C., & Giordano, A. (2018). Mechanisms of resistance in estrogen receptor positive breast cancer: Overcoming resistance to tamoxifen/aromatase inhibitors. Current Opinion in Pharmacology, 41, 59–65. https://doi.org/10.1016/j.coph.2018.04.009
  • Mostafavi, E. S., Asoodeh, A., & Chamani, J. (2022). Evaluation of interaction between Ponceau 4R (P4R) and trypsin using kinetic, spectroscopic, and molecular dynamics simulation methods. Journal of Molecular Liquids, 362, 119761. https://doi.org/10.1016/j.molliq.2022.119761
  • Musino, D., Rivard, C., Landrot, G., Novales, B., Rabilloud, T., & Capron, I. (2021). Hydroxyl groups on cellulose nanocrystal surfaces form nucleation points for silver nanoparticles of varying shapes and sizes. Journal of Colloid and Interface Science, 584, 360–371. https://doi.org/10.1016/j.jcis.2020.09.082
  • Naduparambath, S., Jinitha, T., Shaniba, V., Sreejith, M., Balan, A. K., & Purushothaman, E. (2018). Isolation and characterisation of cellulose nanocrystals from sago seed shells. Carbohydrate Polymers, 180, 13–20. https://doi.org/10.1016/j.carbpol.2017.09.088
  • Nagalakshmaiah, M., El Kissi, N., Mortha, G., & Dufresne, A. (2016). Structural investigation of cellulose nanocrystals extracted from chili leftover and their reinforcement in cariflex-IR rubber latex. Carbohydrate Polymers, 136, 945–954. https://doi.org/10.1016/j.carbpol.2015.09.096
  • Nam, S., Hillyer, M. B., & Condon, B. D. (2020). Method for identifying the triple transition (glass transition-dehydration-crystallization) of amorphous cellulose in cotton. Carbohydrate Polymers, 228, 115374. https://doi.org/10.1016/j.carbpol.2019.115374
  • Ndong Ntoutoume, G. M. A., Granet, R., Mbakidi, J. P., Brégier, F., Léger, D. Y., Fidanzi-Dugas, C., Lequart, V., Joly, N., Liagre, B., Chaleix, V., & Sol, V. (2016). Development of curcumin–cyclodextrin/cellulose nanocrystals complexes: New anticancer drug delivery systems. Bioorganic & Medicinal Chemistry Letters, 26(3), 941–945. https://doi.org/10.1016/j.bmcl.2015.12.060
  • Nihayet, B., Hasip, B., Mehmet, K., Ismail, S., İsmail, and U., & Hacer, T. (2023). Aromatase enzyme activity and liver receptor homolog-1 levels in gestational diabetes mellitus. Current Enzyme Inhibition, 19(1), 49–54. https://doi.org/10.2174/1573408019666221103145729
  • Nsor-Atindana, J., Goff, H. D., Liu, W., Chen, M., & Zhong, F. (2018). The resilience of nanocrystalline cellulose viscosity to simulated digestive processes and its influence on glucose diffusion. Carbohydrate Polymers, 200, 436–445. https://doi.org/10.1016/j.carbpol.2018.07.088
  • Pan, H., Gray, R., Braybrooke, J., Davies, C., Taylor, C., McGale, P., Peto, R., Pritchard, K. I., Bergh, J., Dowsett, M., & Hayes, D. F., EBCTCG. (2017). 20-year risks of breast-cancer recurrence after stopping endocrine therapy at 5 years. The New England Journal of Medicine, 377(19), 1836–1846. https://doi.org/10.1056/NEJMoa1701830
  • Pasqualini, J. R. (2004). The selective estrogen enzyme modulators in breast cancer: A review. Biochimica et Biophysica Acta, 1654(2), 123–143. https://doi.org/10.1016/j.bbcan.2004.03.001
  • Qais, F. A., Abdullah, K., Alam, M. M., Naseem, I., & Ahmad, I. (2017). Interaction of capsaicin with calf thymus DNA: A multi-spectroscopic and molecular modelling study. International Journal of Biological Macromolecules, 97, 392–402. https://doi.org/10.1016/j.ijbiomac.2017.01.022
  • Ram, B., & Chauhan, G. S. (2018). New spherical nanocellulose and thiol-based adsorbent for rapid and selective removal of mercuric ions. Chemical Engineering Journal, 331, 587–596. https://doi.org/10.1016/j.cej.2017.08.128
  • Sanaei, M.-J., Razi, S., Pourbagheri-Sigaroodi, A., & Bashash, D. (2022). The PI3K/Akt/mTOR pathway in lung cancer; oncogenic alterations, therapeutic opportunities, challenges, and a glance at the application of nanoparticles. Translational Oncology, 18, 101364. https://doi.org/10.1016/j.tranon.2022.101364
  • Sankhla, S., Sardar, H. H., & Neogi, S. (2021). Greener extraction of highly crystalline and thermally stable cellulose micro-fibers from sugarcane bagasse for cellulose nano-fibrils preparation. Carbohydrate Polymers, 251, 117030. https://doi.org/10.1016/j.carbpol.2020.117030
  • Satyamurthy, P., & Vigneshwaran, N. (2013). A novel process for synthesis of spherical nanocellulose by controlled hydrolysis of microcrystalline cellulose using anaerobic microbial consortium. Enzyme and Microbial Technology, 52(1), 20–25. https://doi.org/10.1016/j.enzmictec.2012.09.002
  • Shanmughapriya, S., Manilal, A., Sujith, S., Selvin, J., Kiran, G. S., & Natarajaseenivasan, K. (2008). Antimicrobial activity of seaweeds extracts against multiresistant pathogens. Annals of Microbiology, 58(3), 535–541. https://doi.org/10.1007/BF03175554
  • Sheltami, R. M., Abdullah, I., Ahmad, I., Dufresne, A., & Kargarzadeh, H. (2012). Extraction of cellulose nanocrystals from mengkuang leaves (Pandanus tectorius). Carbohydrate Polymers, 88(2), 772–779. https://doi.org/10.1016/j.carbpol.2012.01.062
  • Simpson, E. R., Mahendroo, M. S., Means, G. D., Kilgore, M. W., Hinshelwood, M. M., Graham-Lorence, S., Amarneh, B., Ito, Y., Fisher, C. R., & Michael, M. D. (1994). Aromatase cytochrome P450, the enzyme responsible for estrogen biosynthesis. Endocrine Reviews, 15(3), 342–355. https://doi.org/10.1210/edrv-15-3-342
  • Singh, S., Gaikwad, K. K., Park, S.-I., & Lee, Y. S. (2017). Microwave-assisted step reduced extraction of seaweed (Gelidiella aceroso) cellulose nanocrystals. International Journal of Biological Macromolecules, 99, 506–510. https://doi.org/10.1016/j.ijbiomac.2017.03.004
  • Taflick, T., Schwendler, L. A., Rosa, S. M., Bica, C. I., & Nachtigall, S. M. (2017). Cellulose nanocrystals from acacia bark–Influence of solvent extraction. International Journal of Biological Macromolecules, 101, 553–561. https://doi.org/10.1016/j.ijbiomac.2017.03.076
  • Thambiraj, S., & Shankaran, D. R. (2017). Preparation and physicochemical characterization of cellulose nanocrystals from industrial waste cotton. Applied Surface Science, 412, 405–416. https://doi.org/10.1016/j.apsusc.2017.03.272
  • Van Meeuwen, J., Korthagen, N., De Jong, P., Piersma, A., & Van den Berg, M. (2007). (Anti) estrogenic effects of phytochemicals on human primary mammary fibroblasts, MCF-7 cells and their co-culture. Toxicology and Applied Pharmacology, 221(3), 372–383. https://doi.org/10.1016/j.taap.2007.03.016
  • Vasconcelos, N. F., J. P. A., Feitosa, F. M. P., da Gama, J., P. S., Morais, F. K., Andrade, M., d S. M., de Souza., & M., de Freitas Rosa. (2017). Bacterial cellulose nanocrystals produced under different hydrolysis conditions: Properties and morphological features. Carbohydrate Polymers, 155, 425–431. https://doi.org/10.1016/j.carbpol.2016.08.090
  • Wang, G., Jiang, G., Zhu, Y., Cheng, W., Cao, K., Zhou, J., Lei, H., Xu, G., & Zhao, D. (2022). Developing cellulosic functional materials from multi-scale strategy and applications in flexible bioelectronic devices. Carbohydrate Polymers, 283, 119160. https://doi.org/10.1016/j.carbpol.2022.119160
  • Wang, H., Xie, H., Du, H., Wang, X., Liu, W., Duan, Y., Zhang, X., Sun, L., Zhang, X., & Si, C. (2020). Highly efficient preparation of functional and thermostable cellulose nanocrystals via H2SO4 intensified acetic acid hydrolysis. Carbohydrate Polymers, 239, 116233. https://doi.org/10.1016/j.carbpol.2020.116233
  • Wang, Y., Chan, F. L., Chen, S., & Leung, L. K. (2005). The plant polyphenol butein inhibits testosterone-induced proliferation in breast cancer cells expressing aromatase. Life Sciences, 77(1), 39–51. https://doi.org/10.1016/j.lfs.2004.12.014
  • Widiarto, S., Pramono, E., Suharso, Rochliadi, A., Arcana, I. M. (2019). Cellulose nanofibers preparation from cassava peels via mechanical disruption. Fibers, 7(5), 44. https://doi.org/10.3390/fib7050044
  • Xiao, Y., Liu, Y., Wang, X., Li, M., Lei, H., & Xu, H. (2019). Cellulose nanocrystals prepared from wheat bran: Characterization and cytotoxicity assessment. International Journal of Biological Macromolecules, 140, 225–233. https://doi.org/10.1016/j.ijbiomac.2019.08.160
  • Zhu, M., Wang, L., Wang, Y., Zhou, J., Ding, J., Li, W., Xin, Y., Fan, S., Wang, Z., & Wang, Y. (2018). Biointeractions of herbicide atrazine with human serum albumin: UV-Vis, fluorescence and circular dichroism approaches. International Journal of Environmental Research and Public Health, 15(1), 116. https://doi.org/10.3390/ijerph15010116
  • Zhuang, Y., Liu, J., Chen, J., & Fei, P. (2020). Modified pineapple bran cellulose by potassium permanganate as a copper ion adsorbent and its adsorption kinetic and adsorption thermodynamic. Food and Bioproducts Processing, 122, 82–88. https://doi.org/10.1016/j.fbp.2020.04.008

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.