165
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Marine alkaloid rigidin analogues as potential selective inhibitors of SHP1, a new strategy for cancer immunotherapeutics

&
Pages 5590-5606 | Received 24 Mar 2023, Accepted 14 Jun 2023, Published online: 22 Jun 2023

References

  • Andersen, J. N., Mortensen, O. H., Peters, G. H., Drake, P. G., Iversen, L. F., Olsen, O. H., Jansen, P. G., Andersen, H. S., Tonks, N. K., & Møller, N. P. (2001). Structural and evolutionary relationships among protein tyrosine phosphatase domains. Molecular and Cellular Biology, 21(21), 7117–7136. https://doi.org/10.1128/MCB.21.21.7117-7136.2001
  • Bhasin, S., Nadar, M., & Hasija, Y. (2022). Epicatechin analogues may hinder human parainfluenza virus infection by inhibition of hemagglutinin neuraminidase protein and prevention of cellular entry. Journal of Molecular Modeling, 28(10), 319. https://doi.org/10.1007/s00894-022-05310-9
  • Bowers, K. J., Chow, E., Xu, H., Dror, R. O., Eastwood, M. P., Gregersen, B. A., Klepeis, J. L., Kolossvary, I., Moraes, M. A., Sacerdoti, F.D., & Salmon, J. K. (2006). Scalable algorithms for molecular dynamics simulations on commodity clusters. In Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, pp. 84–es.
  • Chen, C., Cao, M., Zhu, S., Wang, C., Liang, F., Yan, L., & Luo, D. (2015). Discovery of a novel inhibitor of the protein tyrosine phosphatase Shp2. Scientific Reports, 5(1), 17626. https://doi.org/10.1038/srep17626
  • Dasari, R., Błauż, A., Medellin, D. C., Kassim, R. M., Viera, C., Santarosa, M., van der Westhuyzen, A. E., van Otterlo, W. A. L., Olivas, T., Yildiz, T., Betancourt, T., Shuster, C. B., Rogelj, S., Rychlik, B., Hudnall, T., Frolova, L. V., & Kornienko, A. (2019). Microtubule-targeting 7-deazahypoxanthines derived from marine alkaloid rigidins: Exploration of the N3 and N9 positions and interaction with multidrug-resistance proteins. ChemMedChem, 14(3), 322–333. https://doi.org/10.1002/cmdc.201800658
  • Dempke, W. C. M., Uciechowski, P., Fenchel, K., & Chevassut, T. (2018). Targeting SHP-1, 2 and SHIP pathways: A novel strategy for cancer treatment? Oncology, 95(5), 257–269. https://doi.org/10.1159/000490106
  • Evren, S., Wan, S., Ma, X.-Z., Fahim, S., Mody, N., Sakac, D., Jin, T., & Branch, D. R. (2013). Characterization of SHP-1 protein tyrosine phosphatase transcripts, protein isoforms and phosphatase activity in epithelial cancer cells. Genomics, 102(5–6), 491–499. https://doi.org/10.1016/j.ygeno.2013.10.001
  • Friesner, R. A., Banks, J. L., Murphy, R. B., Halgren, T. A., Klicic, J. J., Mainz, D. T., Repasky, M. P., Knoll, E. H., Shelley, M., Perry, J. K., Shaw, D. E., Francis, P., & Shenkin, P. S. (2004). Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. Journal of Medicinal Chemistry, 47(7), 1739–1749. https://doi.org/10.1021/jm0306430
  • Friesner, R. A., Murphy, R. B., Repasky, M. P., Frye, L. L., Greenwood, J. R., Halgren, T. A., Sanschagrin, P. C., & Mainz, D. T. (2006). Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein − ligand complexes. Journal of Medicinal Chemistry, 49(21), 6177–6196. https://doi.org/10.1021/jm051256o
  • Frolova, L. V., Magedov, I. V., Romero, A. E., Karki, M., Otero, I., Hayden, K., Evdokimov, N. M., Banuls, L. M. Y., Rastogi, S. K., Smith, W. R., Lu, S.-L., Kiss, R., Shuster, C. B., Hamel, E., Betancourt, T., Rogelj, S., & Kornienko, A. (2013). Exploring natural product chemistry and biology with multicomponent reactions. 5. Discovery of a novel tubulin-targeting scaffold derived from the rigidin family of marine alkaloids. Journal of Medicinal Chemistry, 56(17), 6886–6900. https://doi.org/10.1021/jm400711t
  • Garcia Fortanet, J., Chen, C. H.-T., Chen, Y.-N. P., Chen, Z., Deng, Z., Firestone, B., Fekkes, P., Fodor, M., Fortin, P. D., Fridrich, C., Grunenfelder, D., Ho, S., Kang, Z. B., Karki, R., Kato, M., Keen, N., LaBonte, L. R., Larrow, J., Lenoir, F., … LaMarche, M. J. (2016). Allosteric inhibition of SHP2: Identification of a potent, selective, and orally efficacious phosphatase inhibitor. Journal of Medicinal Chemistry, 59(17), 7773–7782. https://doi.org/10.1021/acs.jmedchem.6b00680
  • Garg, M., Wahid, M., & Khan, F. (2020). Regulation of peripheral and central immunity: Understanding the role of Src homology 2 domain-containing tyrosine phosphatases, SHP-1 & SHP-2. Immunobiology, 225(1), 151847. https://doi.org/10.1016/j.imbio.2019.09.006
  • Halgren, T. A., Murphy, R. B., Friesner, R. A., Beard, H. S., Frye, L. L., Pollard, W. T., & Banks, J. L. (2004). Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. Journal of Medicinal Chemistry, 47(7), 1750–1759. https://doi.org/10.1021/jm030644s
  • Hao, D., Wang, Y., Li, L., Qian, G., Liu, J., Li, M., Zhang, Y., Zhou, R., & Yan, D. (2020). SHP-1 suppresses the antiviral innate immune response by targeting TRAF3. FASEB Journal : official Publication of the Federation of American Societies for Experimental Biology, 34(9), 12392–12405. https://doi.org/10.1096/fj.202000600RR
  • Huang, Y., Zhu, L., Tan, J., Guo, W., Yang, Z., Shi, W., & Yu, B. (2020). Correlation between SHP-1 and carotid plaque vulnerability in humans. Cardiovascular Pathology : The Official Journal of the Society for Cardiovascular Pathology, 49, 107258. https://doi.org/10.1016/j.carpath.2020.107258
  • Jangra, S., Bharti, A., Lui, W.-Y., Chaudhary, V., Botelho, M. G., Yuen, K.-S., & Jin, D.-Y. (2021). Suppression of JAK-STAT signaling by Epstein-Barr virus tegument protein BGLF2 through recruitment of SHP1 phosphatase and promotion of STAT2 degradation. Journal of Virology, 95(20), e0102721. https://doi.org/10.1128/JVI.01027-21
  • Jiang, M., Ye, J., Wang, X., Li, N., Wang, Y., & Shi, Y. (2020). Phosphatase SHP1 impedes mesenchymal stromal cell immunosuppressive capacity modulated by JAK1/STAT3 and P38 signals. Cell & Bioscience, 10(1), 65. https://doi.org/10.1186/s13578-020-00428-w
  • Kagami, L. P., das Neves, G. M., Timmers, L. F. S. M., Caceres, R. A., & Eifler-Lima, V. L. (2020). Geo-Measures: A PyMOL plugin for protein structure ensembles analysis. Computational Biology and Chemistry, 87, 107322. https://doi.org/10.1016/j.compbiolchem.2020.107322
  • Kan, C., Yang, F., & Wang, S. (2018). SHP2-mediated signal networks in stem cell homeostasis and dysfunction. Stem Cells International, 2018, 8351374. https://doi.org/10.1155/2018/8351374
  • Khouili, S. C., Cook, E. C. L., Hernández-García, E., Martínez-López, M., Conde-Garrosa, R., & Iborra, S. (2020). SHP-1 regulates antigen Cross-Presentation and is exploited by leishmania to evade immunity. Cell Reports, 33(9), 108468. https://doi.org/10.1016/j.celrep.2020.108468
  • Kim, M., Morales, L., Jang, I.-S., Cho, Y.-Y., & Kim, D. (2018). Protein tyrosine phosphatases as potential regulators of STAT3 signaling. International Journal of Molecular Sciences, 19(9), 2708. https://doi.org/10.3390/ijms19092708
  • Kobayashi, J., Cheng, J.-F., Kikuchi, Y., Ishibashi, M., Yamamura, S., Ohizumi, Y., Ohtac, T., & Nozoec, S. (1990). Rigidin, a novel alkaloid with calmodulin antagonistic activity from the okinawan marine tunicate Eudistoma cf. rigida. Tetrahedron Letters, 31(32), 4617–4620. https://doi.org/10.1016/S0040-4039(00)97690-1
  • Kollman, P. A., Massova, I., Reyes, C., Kuhn, B., Huo, S., Chong, L., Lee, M., Lee, T., Duan, Y., Wang, W., Donini, O., Cieplak, P., Srinivasan, J., Case, D. A., & Cheatham, T. E. (2000). Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. Accounts of Chemical Research, 33(12), 889–897. https://doi.org/10.1021/ar000033j
  • Kundu, S., Fan, K., Cao, M., Lindner, D. J., Zhao, Z. J., Borden, E., & Yi, T. (2010). Novel SHP-1 inhibitors tyrosine phosphatase inhibitor-1 and analogs with preclinical anti-tumor activities as tolerated oral agents. Journal of Immunology (Baltimore, Md. : 1950), 184(11), 6529–6536. https://doi.org/10.4049/jimmunol.0903562
  • Li, L., Gruner, K., & Tourtellotte, W. G. (2020). Retrograde nerve growth factor signaling abnormalities in familial dysautonomia. The Journal of Clinical Investigation, 130(5), 2478–2487. https://doi.org/10.1172/JCI130401
  • Lipinski, C. A. (2004). Lead- and drug-like compounds: The rule-of-five revolution. Drug Discovery Today. Technologies, 1(4), 337–341. https://doi.org/10.1016/j.ddtec.2004.11.007
  • Liu, C., Wang, X., Qin, W., Tu, J., Li, C., Zhao, W., Ma, L., Liu, B., Qiu, H., & Yuan, X. (2023). Combining radiation and the ATR inhibitor berzosertib activates STING signaling and enhances immunotherapy via inhibiting SHP1 function in colorectal cancer. Cancer Communications, 43(4), 435–454.
  • Lorenz, U. (2009). SHP-1 and SHP-2 in T cells: Two phosphatases functioning at many levels. Immunological Reviews, 228(1), 342–359. https://doi.org/10.1111/j.1600-065X.2008.00760.x
  • Lv, T., Zhang, Z., Yu, H., Ren, S., Wang, J., Li, S., & Sun, L. (2022). Tamoxifen exerts anticancer effects on pituitary adenoma progression via inducing cell apoptosis and inhibiting cell migration. International Journal of Molecular Sciences, 23(5), 2664.
  • Massova, I., & Kollman, P. A. (2000). Combined molecular mechanical and continuum solvent approach (MM-PBSA/GBSA) to predict ligand binding. Perspectives in Drug Discovery and Design, 18(1), 113–135. https://doi.org/10.1023/A:1008763014207
  • Medellin, D. C., Zhou, Q., Scott, R., Hill, R. M., Frail, S. K., Dasari, R., Ontiveros, S. J., Pelly, S. C., van Otterlo, W. A. L., Betancourt, T., Shuster, C. B., Hamel, E., Bai, R., LaBarbera, D. V., Rogelj, S., Frolova, L. V., & Kornienko, A. (2016). Novel microtubule-targeting 7-deazahypoxanthines derived from marine alkaloid rigidins with potent in vitro and in vivo anticancer activities. Journal of Medicinal Chemistry, 59(1), 480–485. https://doi.org/10.1021/acs.jmedchem.5b01426
  • Newman, D. J., & Cragg, G. M. (2016). Natural products as sources of new drugs from 1981 to 2014. Journal of Natural Products, 79(3), 629–661. https://doi.org/10.1021/acs.jnatprod.5b01055
  • Newman, D. J., & Cragg, G. M. (2020). Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. Journal of Natural Products, 83(3), 770–803. https://doi.org/10.1021/acs.jnatprod.9b01285
  • Pathak, M. K., & Yi, T. (2001). Sodium stibogluconate is a potent inhibitor of protein tyrosine phosphatases and augments cytokine responses in hemopoietic cell lines. Journal of Immunology (Baltimore, Md. : 1950), 167(6), 3391–3397. https://doi.org/10.4049/jimmunol.167.6.3391
  • Poole, A. W., & Jones, M. L. (2005). A SHPing tale: Perspectives on the regulation of SHP-1 and SHP-2 tyrosine phosphatases by the C-terminal tail. Cellular Signalling, 17(11), 1323–1332. https://doi.org/10.1016/j.cellsig.2005.05.016
  • Reddy, R. H., Kim, H., Cha, S., Lee, B., & Kim, Y. J. (2017). Structure-based virtual screening of protein tyrosine phosphatase inhibitors: significance, challenges, and solutions. Journal of Microbiology and Biotechnology, 27(5), 878–895. https://doi.org/10.4014/jmb.1701.01079
  • Sathish, J. G., Johnson, K. G., Fuller, K. J., LeRoy, F. G., Meyaard, L., Sims, M. J., & Matthews, R. J. (2001). Constitutive association of SHP-1 with leukocyte-associated Ig-like receptor-1 in human T cells. Journal of Immunology (Baltimore, Md. : 1950), 166(3), 1763–1770. https://doi.org/10.4049/jimmunol.166.3.1763
  • Schrodinger Release 2021-1, in Desmond Molecular Dynamics System. Schrödinger, LLC, New York, NY, 2021.
  • Schrodinger Release 2021-1, in QikProp. Schrödinger, LLC, New York, NY, 2021.
  • Scott, R., Karki, M., Reisenauer, M. R., Rodrigues, R., Dasari, R., Smith, W. R., Pelly, S. C., van Otterlo, W. A. L., Shuster, C. B., Rogelj, S., Magedov, I. V., Frolova, L. V., & Kornienko, A. (2014). Synthetic and biological studies of tubulin targeting C2-substituted 7-deazahypoxanthines derived from marine alkaloid rigidins. ChemMedChem, 9(7), 1428–1435. https://doi.org/10.1002/cmdc.201300532
  • Shen, D., Chen, W., Zhu, J., Wu, G., Shen, R., Xi, M., & Sun, H. (2020). Therapeutic potential of targeting SHP2 in human developmental disorders and cancers. European Journal of Medicinal Chemistry, 190, 112117. https://doi.org/10.1016/j.ejmech.2020.112117
  • Song, M., Park, J. E., Park, S. G., Lee, D. H., Choi, H.-K., Park, B. C., Ryu, S. E., Kim, J. H., & Cho, S. (2009). NSC-87877, inhibitor of SHP-1/2 PTPs, inhibits dual-specificity phosphatase 26 (DUSP26). Biochemical and Biophysical Research Communications, 381(4), 491–495. https://doi.org/10.1016/j.bbrc.2009.02.069
  • Srinivasan, J., Cheatham, T. E., Cieplak, P., Kollman, P. A., & Case, D. A. (1998). Continuum solvent studies of the stability of DNA, RNA, and phosphoramidate − DNA helices. Journal of the American Chemical Society, 120(37), 9401–9409. https://doi.org/10.1021/ja981844+
  • Stanford, S. M., & Bottini, N. (2023). Targeting protein phosphatases in cancer immunotherapy and autoimmune disorders. Nature Reviews Drug Discovery, 22(4), 273–294. https://doi.org/10.1038/s41573-022-00618-w
  • Stein-Gerlach, M., Wallasch, C., & Ullrich, A. (1998). SHP-2, SH2-containing protein tyrosine phosphatase-2. International Journal of Biochemistry & Cell Biology, 30(5), 559–566. https://doi.org/10.1016/S1357-2725(98)00002-8
  • Sugumaran, M., & Robinson, W. E. (2010). Bioactive dehydrotyrosyl and dehydrodopyl compounds of marine origin. Marine Drugs, 8(12), 2906–2935. https://doi.org/10.3390/md8122906
  • Tajan, M., de Rocca Serra, A., Valet, P., Edouard, T., & Yart, A. (2015). SHP2 sails from physiology to pathology. European Journal of Medical Genetics, 58(10), 509–525. https://doi.org/10.1016/j.ejmg.2015.08.005
  • Tang, Z., Li, C., Kang, B., Gao, G., Li, C., & Zhang, Z. (2017). GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Research, 45(W1), W98–w102. https://doi.org/10.1093/nar/gkx247
  • Tsuda, M., Nozawa, K., Shimbo, K., & Kobayashi, J. (2003). Rigidins B-D, new pyrrolopyrimidine alkaloids from a tunicate Cystodytes species. Journal of Natural Products, 66(2), 292–294. https://doi.org/10.1021/np020393a
  • Tsui, H. W., Hasselblatt, K., Martin, A., Mok, S. C.-H., & Tsui, F. W. L. (2002). Molecular mechanisms underlying SHP-1 gene expression. European Journal of Biochemistry, 269(12), 3057–3064. https://doi.org/10.1046/j.1432-1033.2002.02986.x
  • Tsui, F. W. L., Martin, A., Wang, J., & Tsui, H. W. (2006). Investigations into the regulation and function of the SH2 domain-containing protein-tyrosine phosphatase, SHP-1. Immunologic Research, 35(1–2), 127–136. https://doi.org/10.1385/IR:35:1:127
  • van der Westhuyzen, A. E., Frolova, L. V., Kornienko, A., & van Otterlo, W. A. (2018). Chapter 4 - The rigidins: Isolation, bioactivity, and total synthesis—novel pyrrolo[2,3-d]pyrimidine analogues using multicomponent reactions. In H.-J. Knölker (Ed.), The alkaloids: Chemistry and biology (pp. 191–220). Academic Press.
  • Varone, A., Spano, D., & Corda, D. (2020). Shp1 in solid cancers and their therapy. Frontiers in Oncology, 10, 935.
  • Wang, W., Liu, L., Song, X., Mo, Y., Komma, C., Bellamy, H. D., Zhao, Z. J., & Zhou, G. W. (2011). Crystal structure of human protein tyrosine phosphatase SHP-1 in the open conformation. Journal of Cellular Biochemistry, 112(8), 2062–2071. https://doi.org/10.1002/jcb.23125
  • Watson, H. A., Wehenkel, S., Matthews, J., & Ager, A. (2016). SHP-1: The next checkpoint target for cancer immunotherapy? Biochemical Society Transactions, 44(2), 356–362. https://doi.org/10.1042/BST20150251
  • Yang, R., Dong, Q., Xu, H., Gao, X., Zhao, Z., Qin, J., Chen, C., & Luo, D. (2020). Identification of phomoxanthone A and B as protein tyrosine phosphatase inhibitors. ACS Omega, 5(40), 25927–25935. https://doi.org/10.1021/acsomega.0c03315
  • Yuan, X., Duan, Y., Xiao, Y., Sun, K., Qi, Y., Zhang, Y., Ahmed, Z., Moiani, D., Yao, J., Li, H., Zhang, L., Yuzhalin, A. E., Li, P., Zhang, C., Badu-Nkansah, A., Saito, Y., Liu, X., Kuo, W.-L., Ying, H., … Yu, D. (2022). Vitamin E enhances cancer immunotherapy by reinvigorating dendritic cells via targeting checkpoint SHP1. Cancer Discovery, 12(7), 1742–1759. https://doi.org/10.1158/2159-8290.CD-21-0900
  • Zeng, X., Zhang, P., He, W., Qin, C., Chen, S., Tao, L., Wang, Y., Tan, Y., Gao, D., Wang, B., Chen, Z., Chen, W., Jiang, Y. Y., & Chen, Y. Z. (2018). NPASS: Natural product activity and species source database for natural product research, discovery and tool development. Nucleic Acids Research, 46(D1), D1217–d1222. https://doi.org/10.1093/nar/gkx1026
  • Zhang, M., Hu, X., Kang, Y., Wang, Z., Zhou, W., Liu, C., & Yang, X. (2021). SHP1 decreases level of P-STAT3 (Ser727) and inhibits proliferation and migration of pancreatic cancer cells. Journal of Environmental Pathology, Toxicology and Oncology : Official Organ of the International Society for Environmental Toxicology and Cancer, 40(1), 17–27. https://doi.org/10.1615/JEnvironPatholToxicolOncol.2020035980

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.