97
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Identification of structural fingerprints among natural inhibitors of HDAC1 to accelerate nature-inspired drug discovery in cancer epigenetics

, , ORCID Icon, , , , ORCID Icon & ORCID Icon show all
Pages 5642-5656 | Received 15 Dec 2022, Accepted 15 Jun 2023, Published online: 26 Jun 2023

References

  • Abdizadeh, T., Ghodsi, R., & Hadizadeh, F. (2017). 3D-QSAR (CoMFA, CoMSIA) and molecular docking studies on histone deacetylase 1 selective inhibitors. Recent Patents on anti-Cancer Drug Discovery, 12(4), 365–383. https://doi.org/10.2174/1574892812666170508125927
  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Amin, S. A., Adhikari, N., Gayen, S., & Jha, T. (2019). Reliable structural information for rational design of benzoxazole type potential cholesteryl ester transfer protein (CETP) inhibitors through multiple validated modeling techniques. Journal of Biomolecular Structure and Dynamics, 37(17), 4528–4541. https://doi.org/10.1080/07391102.2018.1552895
  • Amin, S. A., Adhikari, N., & Jha, T. (2021). Development of decision trees to discriminate HDAC8 inhibitors and non-inhibitors using recursive partitioning. Journal of Biomolecular Structure and Dynamics, 39(1), 1–8. https://doi.org/10.1080/07391102.2019.1661876
  • Amin, S. A., & Gayen, S. (2016). Modelling the cytotoxic activity of pyrazolo-triazole hybrids using descriptors calculated from the open source tool “PaDEL- descriptor”. Journal of Taibah University for Science, 10(6), 896–905. https://doi.org/10.1016/j.jtusci.2016.04.009
  • Atanasov, A. G., Zotchev, S. B., Dirsch, V. M., & Supuran, C. T. (2021). Natural products in drug discovery: Advances and opportunities. Nature Reviews. Drug Discovery, 20(3), 200–216. https://doi.org/10.1038/s41573-020-00114-z
  • Berendsen, H. J. C., Grigera, J. R., & Straatsma, T. P. (1987). The missing term in effective pair potentials. Journal of Physical Chemistry, 91(24), 6269–6271. https://doi.org/10.1021/j100308a038
  • Bolden, J. E., Peart, M. J., & Johnstone, R. W. (2006). Anticancer activities of histone deacetylase inhibitors. Nature Reviews. Drug Discovery, 5(9), 769–784. https://doi.org/10.1038/nrd2133
  • Chen, Y. D., Jiang, Y. J., Zhou, J. W., Yu, Q. S., & You, Q. D. (2008). Identification of ligand features essential for HDACs inhibitors by pharmacophore modeling. Journal of Molecular Graphics & Modelling, 26(7), 1160–1168. https://doi.org/10.1016/j.jmgm.2007.10.007
  • Chen, L., Li, Y., Zhao, Q., Peng, H., & Hou, T. (2011). ADME evaluation in drug discovery. 10. Predictions of P-glycoprotein inhibitors using recursive partitioning and naive Bayesian classification techniques. Molecular Pharmaceutics, 8(3), 889–900. https://doi.org/10.1021/mp100465q
  • Choubey, S. K., & Jeyaraman, J. (2016). A mechanistic approach to explore novel HDAC1 inhibitor using pharmacophore modeling, 3D-QSAR analysis, molecular docking, density functional and molecular dynamics simulation study. Journal of Molecular Graphics & Modelling, 70, 54–69. https://doi.org/10.1016/j.jmgm.2016.09.008
  • Das, S., Amin, S. A., Gayen, S., & Jha, T. (2022). Insight into the structural requirements of gelatinases (MMP-2 and MMP-9) inhibitors by multiple validated molecular modelling approaches: Part II. SAR and QSAR in Environmental Research, 33(3), 167–192. https://doi.org/10.1080/1062936X.2022.2041722
  • Farooqi, A., A., Naqvi, S. K. U. H., Perk, A., A., Yanar, O., Tabassum, S., Ahmad, M. S., Mansoor, Q., Ashry, M. S., Ismail, M., Naoum, G. E., & Arafat, W. O. (2018). Natural agents-mediated targeting of histone deacetylases. Archivum Immunologiae et Therapiae Experimentalis, 66(1), 31–44. https://doi.org/10.1007/s00005-017-0488-0
  • Fritzsche, F. R., Weichert, W., Röske, A., Gekeler, V., Beckers, T., Stephan, C., Jung, K., Scholman, K., Denkert, C., Dietel, M., & Kristiansen, G. (2008). Class I histone deacetylases 1, 2 and 3 are highly expressed in renal cell cancer. BMC Cancer, 8(1), 1–10. https://doi.org/10.1186/1471-2407-8-381
  • Ghosh, K., Bhardwaj, B., Amin, S. A., Jha, T., & Gayen, S. (2020). Identification of structural fingerprints for ABCG2 inhibition by using Monte Carlo optimization, Bayesian classification, and structural and physicochemical interpretation (SPCI) analysis. SAR and QSAR in Environmental Research, 31(6), 439–455. https://doi.org/10.1080/1062936X.2020.1771769
  • Glaser, K. B., Li, J., Staver, M. J., Wei, R. Q., Albert, D. H., & Davidsen, S. K. (2003). Role of class I and class II histone deacetylases in carcinoma cells using siRNA. Biochemical and Biophysical Research Communications, 310(2), 529–536. https://doi.org/10.1016/j.bbrc.2003.09.043
  • Karagiannis, T. C., & El-Osta, A. (2007). Will broad-spectrum histone deacetylase inhibitors be superseded by more specific compounds? Leukemia, 21(1), 61–65. https://doi.org/10.1038/sj.leu.2404464
  • Kazanets, A., Shorstova, T., Hilmi, K., Marques, M., & Witcher, M. (2016). Epigenetic silencing of tumor suppressor genes: Paradigms, puzzles, and potential. Biochimica et Biophysica Acta, 1865(2), 275–288. https://doi.org/10.1016/j.bbcan.2016.04.001
  • Kim, B., & Hong, J. (2014). An overview of naturally occurring histone deacetylase inhibitors. Current Topics in Medicinal Chemistry, 14(24), 2759–2782. https://doi.org/10.2174/1568026615666141208105614
  • Kim, B., Park, H., Salvador, L. A., Serrano, P. E., Kwan, J. C., Zeller, S. L., Chen, Q.-Y., Ryu, S., Liu, Y., Byeon, S., Luesch, H., & Hong, J. (2014). Evaluation of class I HDAC isoform selectivity of largazole analogues. Bioorganic & Medicinal Chemistry Letters, 24(16), 3728–3731. https://doi.org/10.1016/j.bmcl.2014.07.006
  • Kozikowski, A. P., Chen, Y., Gaysin, A. M., Savoy, D. N., Billadeau, D. D., & Kim, K. H. (2008). Chemistry, Biology, and QSAR Studies of Substituted Biaryl Hydroxamates and Mercaptoacetamides as HDAC Inhibitors—Nanomolar‐Potency Inhibitors of Pancreatic Cancer Cell Growth. ChemMedChem, 3(3), 487–501. https://doi.org/10.1002/cmdc.200700314
  • Ler, S. Y., Leung, C. H. W., Khin, L. W., Lu, G. D., Salto-Tellez, M., Hartman, M., Iau, P. T. C., Yap, C. T., & Hooi, S. C. (2015). HDAC1 and HDAC2 independently predict mortality in hepatocellular carcinoma by a competing risk regression model in a Southeast Asian population. Oncology Reports, 34(5), 2238–2250. https://doi.org/10.3892/or.2015.4263
  • Li, D., Zhu, H., Liang, C., Li, W., Xing, G., Ma, L., Ding, L., Zhang, Y., He, F., & Zhang, L. (2014). CKIP-1 suppresses the adipogenesis of mesenchymal stem cells by enhancing HDAC1-associated repression of C/EBP α. Journal of Molecular Cell Biology, 6(5), 368–379. https://doi.org/10.1093/jmcb/mju034
  • Lin, Y., Zhang, H., Niu, T., Tang, M. L., & Chang, J. (2020). Discovery of novel indoleamine 2, 3-dioxygenase 1 (IDO1) and histone deacetylase 1 (HDAC1) dual inhibitors derived from the natural product saprorthoquinone. Molecules, 25(19), 4494. https://doi.org/10.3390/molecules25194494
  • Ling, Y., Guo, J., Yang, Q., Zhu, P., Miao, J., Gao, W., Peng, Y., Yang, J., Xu, K., Xiong, B., Liu, G., Tao, J., Luo, L., Zhu, Q., & Zhang, Y. (2018). Development of novel β-carboline-based hydroxamate derivatives as HDAC inhibitors with antiproliferative and antimetastatic activities in human cancer cells. European Journal of Medicinal Chemistry, 144, 398–409. https://doi.org/10.1016/j.ejmech.2017.12.061
  • Liu, Y. E., Chen, C., Wang, X., Sun, Y., Zhang, J., Chen, J., & Shi, Y. (2022). An epigenetic role of mitochondria in cancer. Cells, 11(16), 2518. https://doi.org/10.3390/cells11162518
  • Luparello, C., Mauro, M., Arizza, V., & Vazzana, M. (2020). Histone deacetylase inhibitors from marine invertebrates. Biology, 9(12), 429. https://doi.org/10.3390/biology9120429
  • Moinul, M., Amin, S. A., Khatun, S., Das, S., Jha, T., & Gayen, S. (2023). A detail survey and analysis of selectivity criteria for indole-based histone deacetylase 8 (HDAC8) inhibitors. Journal of Molecular Structure, 1271, 133967. https://doi.org/10.1016/j.molstruc.2022.133967
  • Ni, D. X., Wang, Q., Li, Y. M., Cui, Y. M., Shen, T. Z., Li, X. L., Sun, H. D., Zhang, X. J., Zhang, R., & Xiao, W. L. (2021). Synthesis of nigranoic acid and manwuweizic acid derivatives as HDAC inhibitors and anti-inflammatory agents. Bioorganic Chemistry, 109, 104728. https://doi.org/10.1016/j.bioorg.2021.104728
  • Praseetha, S., Bandaru, S., Yadav, M., Nayarisseri, A., & Sureshkumar, S. (2016). Common SAR derived from multiple QSAR models on Vorinostat derivatives targeting HDACs in tumor treatment. Current Pharmaceutical Design, 22(33), 5072–5078. https://doi.org/10.2174/1381612822666160621094009
  • Qiu, X., Zhu, L., Wang, H., Tan, Y., Yang, Z., Yang, L., & Wan, L. (2021). From natural products to HDAC inhibitors: An overview of drug discovery and design strategy. Bioorganic & Medicinal Chemistry, 52, 116510. https://doi.org/10.1016/j.bmc.2021.116510
  • Richon, V. M., Emiliani, S., Verdin, E., Webb, Y., Breslow, R., Rifkind, R. A., & Marks, P. A. (1998). A class of hybrid polar inducers of transformed cell differentiation inhibits histone deacetylases. Proceedings of the National Academy of Sciences of the United States of America, 95(6), 3003–3007. https://doi.org/10.1073/pnas.95.6.3003
  • Ruijter, A. J. D., Gennip, A. H. V., Caron, H. N., Kemp, S., & Kuilenburg, A. B. V. (2003). Histone deacetylases (HDACs): Characterization of the classical HDAC family. The Biochemical Journal, 370(Pt 3), 737–749. https://doi.org/10.1042/bj20021321
  • Schrçdinger Suite, Schrçdinger, LLC. (2019).https://www.schrodinger.com/products/glide (as accessed on 21st June 2023)
  • Singh, S., & Qureshi, I. A. (2022). Identification of potent inhibitors against chorismate synthase of Toxoplasma gondii using molecular dynamics simulations. Journal of Molecular Graphics & Modelling, 114, 108183. https://doi.org/10.1016/j.jmgm.2022.108183
  • Tan, S., & Liu, Z. P. (2015). Natural Products as Zinc‐Dependent Histone Deacetylase Inhibitors. ChemMedChem, 10(3), 441–450. https://doi.org/10.1002/cmdc.201402460
  • Tang, H., Wang, X. S., Huang, X. P., Roth, B. L., Butler, K. V., Kozikowski, A. P., Jung, M., & Tropsha, A. (2009). Novel inhibitors of human histone deacetylase (HDAC) identified by QSAR modeling of known inhibitors, virtual screening, and experimental validation. Journal of Chemical Information and Modeling, 49(2), 461–476. https://doi.org/10.1021/ci800366f
  • Wagner, J. M., Hackanson, B., Lübbert, M., & Jung, M. (2010). Histone deacetylase (HDAC) inhibitors in recent clinical trials for cancer therapy. Clinical Epigenetics, 1(3–4), 117–136. https://doi.org/10.1007/s13148-010-0012-4
  • Weerasinghe, S. V., Estiu, G., Wiest, O., & Pflum, M. K. H. (2008). Residues in the 11 Å channel of histone deacetylase 1 promote catalytic activity: Implications for designing isoform-selective histone deacetylase inhibitors. Journal of Medicinal Chemistry, 51(18), 5542–5551. https://doi.org/10.1021/jm800081j
  • Wilson, A. J., Byun, D. S., Popova, N., Murray, L. B., L'Italien, K., Sowa, Y., Arango, D., Velcich, A., Augenlicht, L. H., & Mariadason, J. M. (2006). Histone deacetylase 3 (HDAC3) and other class I HDACs regulate colon cell maturation and p21 expression and are deregulated in human colon cancer. The Journal of Biological Chemistry, 281(19), 13548–13558. https://doi.org/10.1074/jbc.M510023200
  • Wiper-Bergeron, N., Wu, D., Pope, L., Schild-Poulter, C., & Haché, R. J. (2003). Stimulation of preadipocyte differentiation by steroid through targeting of an HDAC1 complex. The EMBO Journal, 22(9), 2135–2145. https://doi.org/10.1093/emboj/cdg218
  • Yamaguchi, T., Cubizolles, F., Zhang, Y., Reichert, N., Kohler, H., Seiser, C., & Matthias, P. (2010). Histone deacetylases 1 and 2 act in concert to promote the G1-to-S progression. Genes & Development, 24(5), 455–469. https://doi.org/10.1101/gad.552310
  • Yang, F., Zhao, N., Song, J., Zhu, K., Jiang, C. S., Shan, P., & Zhang, H. (2019). Design, synthesis and biological evaluation of novel coumarin-based hydroxamate derivatives as histone deacetylase (hdac) inhibitors with antitumor activities. Molecules, 24(14), 2569. https://doi.org/10.3390/molecules24142569
  • Yao, Y., Tu, Z., Liao, C., Wang, Z., Li, S., Yao, H., Li, Z., & Jiang, S. (2015). Discovery of novel class I histone deacetylase inhibitors with promising in vitro and in vivo antitumor activities. Journal of Medicinal Chemistry, 58(19), 7672–7680. https://doi.org/10.1021/acs.jmedchem.5b01044
  • Zhao, L., Xiang, Y., Song, J., & Zhang, Z. (2013). A novel two-step QSAR modeling work flow to predict selectivity and activity of HDAC inhibitors. Bioorganic & Medicinal Chemistry Letters, 23(4), 929–933. https://doi.org/10.1016/j.bmcl.2012.12.067
  • Zhao, N., Yang, F., Han, L., Qu, Y., Ge, D., & Zhang, H. (2020). Development of coumarin- based hydroxamates as histone deacetylase inhibitors with antitumor activities. Molecules, 25(3), 717. https://doi.org/10.3390/molecules25030717
  • Zhou, H., Xu, J., Zhang, C., & Wen, Y. (2019). Aberrant histone deacetylase 1 expression upregulates vimentin expression via an NF-κB-dependent pathway in hepatocellular carcinoma. Oncology Letters, 18(1), 339–347. https://doi.org/10.3892/ol.2019.10309

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.