368
Views
11
CrossRef citations to date
0
Altmetric
Research Articles

Determination of antioxidant, DNA protection, enzyme inhibition potential and molecular docking studies of a biomarker ursolic acid in Nepeta species

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 5799-5816 | Received 24 Apr 2023, Accepted 17 Jun 2023, Published online: 02 Jul 2023

References

  • Addar, L., Bensouici, C., Zennia, S. S. A., Haroun, S. B., & Mati, A. (2019). Antioxidant, tyrosinase and urease inhibitory activities of camel αS-casein and its hydrolysate fractions. Small Ruminant Research, 173, 30–35. https://doi.org/10.1016/j.smallrumres.2019.01.015
  • Akıncıoğlu, A., Kocaman, E., Akıncıoğlu, H., Salmas, R. E., Durdagi, S., Gülçin, İ., Supuran, C. T., & Göksu, S. (2017). The synthesis of novel sulfamides derived from β-benzylphenethylamines as acetylcholinesterase, butyrylcholinesterase and carbonic anhydrase enzymes inhibitors. Bioorganic Chemistry, 74, 238–250. https://doi.org/10.1016/j.bioorg.2017.08.012
  • Almaz, Z., Oztekin, A., Tan, A., & Ozdemir, H. (2021). Biological evaluation and molecular docking studies of 4-aminobenzohydrazide derivatives as cholinesterase inhibitors. Journal of Molecular Structure, 1244, 130918. https://doi.org/10.1016/j.molstruc.2021.130918
  • Al-Taweel, A. M., Raish, M., Perveen, S., Fawzy, G. A., Ahmad, A., Ansari, M. A., Mudassar, S., & Ganaie, M. A. (2017). Nepeta deflersiana attenuates isoproterenol-induced myocardial injuries in rats: Possible involvement of oxidative stress, apoptosis, inflammation through nuclear factor (NF)-κB downregulation. Phytomedicine: İnternational Journal of Phytotherapy and Phytopharmacology, 34, 67–75. https://doi.org/10.1016/j.phymed.2017.08.003
  • Alyar, S., Özmen, Ü. Ö., Adem, Ş., Alyar, H., Bilen, E., & Kaya, K. (2021). Synthesis, spectroscopic characterizations, carbonic anhydrase II inhibitory activity, anticancer activity and docking studies of new Schiff bases of sulfa drugs. Journal of Molecular Structure, 1223, 128911. https://doi.org/10.1016/j.molstruc.2020.128911
  • Babalola, I. T., & Shode, F. O. (2013). Ubiquitous ursolic acid: A potential pentacyclic triterpene natural product. Journal of Pharmacognosy and Phytochemistry, 2(2), 214–222.
  • Baiseitova, A., Jenis, J., Kim, J. Y., Li, Z. P., & Park, K. H. (2021). Phytochemical analysis of aerial part of Ikonnikovia kaufmanniana and their protection of DNA damage. Natural Product Research, 35(5), 880–883. https://doi.org/10.1080/14786419.2019.1607858
  • Bakhtiari, N., Hosseinkhani, S., Soleimani, M., Hemmati, R., Noori-Zadeh, A., Javan, M., & Tashakor, A. (2016). Short-term ursolic acid promotes skeletal muscle rejuvenation through enhancing of SIRT1 expression and satellite cells proliferation. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 78, 185–196. https://doi.org/10.1016/j.biopha.2016.01.010
  • Barba, F. J., de Souza Sant’Ana, A., Orlien, V., & Koubaa, M. (2017). Innovative technologies for food preservation: Inactivation of spoilage and pathogenic microorganisms. Academic Press.
  • Barba-Orellana, S., Barba, F. J., Quilez, F., Cuesta, L., Denoya, G. I., Vieira, P., Pinto, C. A., & Saraiva, J. A. (2020). Nutrition, public health, and sustainability: An overview of current challenges and future perspectives. In Agri-food ındustry strategies for healthy diets and sustainability (pp. 3–50). Elsevier. https://doi.org/10.1016/b978-0-12-817226-1.00001-1
  • Baricevic, D., Sosa, S., Della Loggia, R., Tubaro, A., Simonovska, B., Krasna, A., & Zupancic, A. (2001). Topical anti-inflammatory activity of Salvia officinalis L. leaves: The relevance of ursolic acid. Journal of Ethnopharmacology, 75(2-3), 125–132. https://doi.org/10.1016/s0378-8741(00)00396-2
  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000). The protein data bank. Nucleic Acids Research, 28(1), 235–242. https://doi.org/10.1093/nar/28.1.235
  • Biovia, D. S. (2019). BIOVIA discovery studio visualize 2019, version 2019. Dassault Systèmes BIOVIA.
  • Birari, R. B., & Bhutani, K. K. (2007). Pancreatic lipase inhibitors from natural sources: Unexplored potential. Drug Discovery Today, 12(19–20), 879–889. https://doi.org/10.1016/j.drudis.2007.07.024
  • Bisht, D., Padalia, R., Joshi, S., Tewari, A., & Mathela, C. (2010). Constituents of nepeta clarkei hook. f. and their antioxidant activity. Indian Journal of Chemistry, 49B, 807–811.
  • Blois, M. S. (1958). Antioxidant determinations by the use of a stable free radical. Nature, 181(4617), 1199–1200. https://doi.org/10.1038/1811199a0
  • Borman, S. (2004). Much ado about enzyme mechanisms. Chemical & Engineering News Archive, 82(8), 35–39. https://doi.org/10.1021/cen-v082n008.p035
  • Bravo, L. (1998). Polyphenols: Chemistry, dietary sources, metabolism, and nutritional significance. Nutrition Reviews, 56(11), 317–333. https://doi.org/10.1111/j.1753-4887.1998.tb01670.x
  • Cespedes, C. L., Muñoz, E., Salazar, J. R., Yamaguchi, L., Werner, E., Alarcon, J., & Kubo, I. (2013). Inhibition of cholinesterase activity by extracts, fractions and compounds from Calceolaria talcana and C. integrifolia (Calceolariaceae: Scrophulariaceae). Food and Chemical Toxicology, 62, 919–926. https://doi.org/10.1016/j.fct.2013.10.027
  • Chanda, J., Mukherjee, P. K., Biswas, R., Biswas, S., Tiwari, A. K., & Pargaonkar, A. (2019). UPLC‐QTOF‐MS analysis of a carbonic anhydrase‐inhibiting extract and fractions of Luffa acutangula (L.) Roxb (ridge gourd). Phytochemical Analysis: PCA, 30(2), 148–155. https://doi.org/10.1002/pca.2800
  • Chung, Y.-K., Heo, H.-J., Kim, E.-K., Kim, H.-K., Huh, T.-L., Lim, Y., Kim, S.-K., & Shin, D.-H. (2001). Inhibitory effect of ursolic acid purified from Origanum majorana L. on the Acetylcholinesterase. Molecules & Cells (Springer Science & Business Media BV), 11(2), 137–143.
  • da Cunha, E. F., Barbosa, E. F., Oliveira, A. A., & Ramalho, T. C. (2010). Molecular modeling of Mycobacterium tuberculosis DNA gyrase and its molecular docking study with gatifloxacin inhibitors. Journal of Biomolecular Structure & Dynamics, 27(5), 619–625. https://doi.org/10.1080/07391102.2010.10508576
  • da Cunha, E. F., Ramalho, T. C., & Reynolds, R. C. (2008). Binding mode analysis of 2, 4-diamino-5-methyl-5-deaza-6-substituted pteridines with Mycobacterium tuberculosis and human dihydrofolate reductases. Journal of Biomolecular Structure & Dynamics, 25(4), 377–385. https://doi.org/10.1080/07391102.2008.10507186
  • de Almeida, S. M. V., Lafayette, E. A., da Silva, L. P. B. G., Amorim, C. A. d. C., de Oliveira, T. B., Ruiz, A. L. T. G., de Carvalho, J. E., de Moura, R. O., Beltrão, E. I. C., de Lima, M. d. C. A., & de Carvalho Júnior, L. B. (2015). Synthesis, DNA binding, and antiproliferative activity of novel acridine-thiosemicarbazone derivatives. International Journal of Molecular Sciences, 16(6), 13023–13042. https://doi.org/10.3390/ijms160613023
  • Ding, H., Hu, X., Xu, X., Zhang, G., & Gong, D. (2018). Inhibitory mechanism of two allosteric inhibitors, oleanolic acid and ursolic acid on α-glucosidase. International Journal of Biological Macromolecules, 107(Pt B), 1844–1855. https://doi.org/10.1016/j.ijbiomac.2017.10.040
  • Dinis, T. C., Maderia, V. M., & Almeida, L. M. (1994). Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Archives of Biochemistry and Biophysics, 315(1), 161–169. https://doi.org/10.1006/abbi.1994.1485
  • Do Nascimento, P. G., Lemos, T. L., Bizerra, A. M., Arriaga, Â. M., Ferreira, D. A., Santiago, G. M., Braz-Filho, R., & Costa, J. G. M. (2014). Antibacterial and antioxidant activities of ursolic acid and derivatives. Molecules (Basel, Switzerland), 19(1), 1317–1327. https://doi.org/10.3390/molecules19011317
  • Durmaz, L., Erturk, A., Akyüz, M., Polat Kose, L., Uc, E. M., Bingol, Z., Saglamtas, R., Alwasel, S., & Gulcin, İ. (2022). Screening of carbonic anhydrase, acetylcholinesterase, butyrylcholinesterase, and α-glycosidase enzyme inhibition effects and antioxidant activity of coumestrol. Molecules, 27(10), 3091. https://doi.org/10.3390/molecules27103091
  • Ellman, G. L., Courtney, K. D., Andres, V., & Feather-Stone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7(2), 88–95. https://doi.org/10.1016/0006-2952(61)90145-9
  • Eloy, J. O., Saraiva, J., Albuquerque, S. d., & Marchetti, J. M. (2015). Preparation, characterization and evaluation of the in vivo trypanocidal activity of ursolic acid-loaded solid dispersion with poloxamer 407 and sodium caprate. Brazilian Journal of Pharmaceutical Sciences, 51(1), 101–109. https://doi.org/10.1590/S1984-82502015000100011
  • García, A. C., de Souza, L. G. A., Pereira, M. G., Castro, R. N., García-Mina, J. M., Zonta, E., Lisboa, F. J. G., & Berbara, R. L. L. (2016). Structure-property-function relationship in humic substances to explain the biological activity in plants. Scientific Reports, 6(1), 1–10. https://doi.org/10.1038/srep20798
  • Girma, B. (2020). Isolation of ursolic acid from the leaves of Ocimum lamiifolium collected from Addis Ababa Area, Ethiopia. African Journal of Biotechnology, 19(2), 65–70. https://doi.org/10.5897/AJB2018.16611
  • Gülçin, İ., Bingöl, Z., Taslimi, P., Gören, A. C., Alwasel, S. H., & Tel, A. Z. (2022). Polyphenol contents, potential antioxidant, anticholinergic and antidiabetic properties of mountain mint (Cyclotrichium leucotrichum). Chemistry & Biodiversity, 19(3), e202100775. https://doi.org/10.1002/cbdv.202100775
  • Hameed, A., Al-Rashida, M., Uroos, M., Qazi, S. U., Naz, S., Ishtiaq, M., & Khan, K. M. (2019). A patent update on therapeutic applications of urease inhibitors (2012–2018). Expert Opinion on Therapeutic Patents, 29(3), 181–189. https://doi.org/10.1080/13543776.2019.1584612
  • Hemaia, M., Motawe, L., Ibrahim, F., Ibrahim, M., Mahmoud, E., & Aly, H. (2015). Isolation and ıdentification of terpenoids and sterols of Nepeta cataria L. International Journal of PharmTech Research, 8(10), 10–17.
  • Hussain, J., Ullah, F., Hussain, H., Hussain, T., & Shah, M. R. (2008). Nepetolide: A new diterpene from Nepeta suavis. Zeitschrift für Naturforschung B, 63(5), 591–594. https://doi.org/10.1515/znb-2008-0518
  • Ikeda, Y., Murakami, A., & Ohigashi, H. (2008). Ursolic acid: An anti‐and pro‐inflammatory triterpenoid. Molecular Nutrition & Food Research, 52(1), 26–42. https://doi.org/10.1002/mnfr.200700389
  • Jamila, N., Ullah, R., Alwahsh, M. A. A., Haider, S., Wong, K., & Ullah, Z. (2011). Secondary metabolites from Nepeta juncea. African Journal of Biotechnology, 10(77), 17884–17886.
  • Janicsák, G., Veres, K., Kakasy, A. Z., & Máthé, I. (2006). Study of the oleanolic and ursolic acid contents of some species of the Lamiaceae. Biochemical Systematics and Ecology, 34(5), 392–396. https://doi.org/10.1016/j.bse.2005.12.004
  • Jayaprakasam, B., Olson, L. K., Schutzki, R. E., Tai, M.-H., & Nair, M. G. (2006). Amelioration of obesity and glucose intolerance in high-fat-fed C57BL/6 mice by anthocyanins and ursolic acid in Cornelian cherry (Cornus mas). Journal of Agricultural and Food Chemistry, 54(1), 243–248. https://doi.org/10.1021/jf0520342
  • Jinhua, W. (2019). Ursolic acid: Pharmacokinetics process in vitro and in vivo, a mini review. Archiv Der Pharmazie, 352(3), 1800222. https://doi.org/10.1002/ardp.201800222
  • Kashyap, D., Sharma, A. S., Tuli, H., Punia, S., & K Sharma, A. (2016). Ursolic acid and oleanolic acid: Pentacyclic terpenoids with promising anti-inflammatory activities. Recent Patents on İnflammation & Allergy Drug Discovery, 10(1), 21–33. https://doi.org/10.2174/1872213x10666160711143904
  • Kashyap, D., Tuli, H. S., & Sharma, A. K. (2016). Ursolic acid (UA): A metabolite with promising therapeutic potential. Life Sciences, 146, 201–213. https://doi.org/10.1016/j.lfs.2016.01.017
  • Kim, K.-A., Lee, J.-S., Park, H.-J., Kim, J.-W., Kim, C.-J., Shim, I.-S., Kim, N.-J., Han, S.-M., & Lim, S. (2004). Inhibition of cytochrome P450 activities by oleanolic acid and ursolic acid in human liver microsomes. Life Sciences, 74(22), 2769–2779. https://doi.org/10.1016/j.lfs.2003.10.020
  • Klimek, B., & Modnicki, D. (2004). Terpenoids and sterols from Nepeta cataria L. var. citriodora (Lamiaceae). Methods, 62(3), 231–235.
  • Kolak, U., Hacibekiroğlu, I., Öztürk, M., Özgökçe, F., Topcu, G., & Ulubelen, A. (2009). Antioxidant and anticholinesterase constituents of Salvia poculata. Turkish Journal of Chemistry, 33(6), 813–823. https://doi.org/10.3906/kim-0902-15
  • Köngül Şafak, E., Şeker Karatoprak, G., Dirmenci, T., Duman, H., & Küçükboyacı, N. (2022). Cytotoxic effects of some nepeta species against breast cancer cell lines and their associated phytochemical properties. Plants, 11(11), 1427. https://doi.org/10.3390/plants11111427
  • Kuca, K., Musilek, K., Jun, D., Zdarova-Karasova, J., Nepovimova, E., Soukup, O., Hrabinova, M., Mikler, J., Franca, T. C. C., Da Cunha, E. F. F., De Castro, A. A., Valis, M., & Ramalho, T. C. (2018). A newly developed oxime K203 is the most effective reactivator of tabun-inhibited acetylcholinesterase. BMC Pharmacology & Toxicology, 19(1), 8. https://doi.org/10.1186/s40360-018-0196-3
  • Liobikas, J., Majiene, D., Trumbeckaite, S., Kursvietiene, L., Masteikova, R., Kopustinskiene, D. M., Savickas, A., & Bernatoniene, J. (2011). Uncoupling and antioxidant effects of ursolic acid in isolated rat heart mitochondria. Journal of Natural Products, 74(7), 1640–1644. https://doi.org/10.1021/np200060p
  • Liu, H. R., Ahmad, N., Lv, B., & Li, C. (2021). Advances in production and structural derivatization of the promising molecule ursolic acid. Biotechnology Journal, 16(11), 2000657. https://doi.org/10.1002/biot.202000657
  • Loesche, A., Köwitsch, A., Lucas, S. D., Al-Halabi, Z., Sippl, W., Al-Harrasi, A., & Csuk, R. (2019). Ursolic and oleanolic acid derivatives with cholinesterase inhibiting potential. Bioorganic Chemistry, 85, 23–32. https://doi.org/10.1016/j.bioorg.2018.12.013
  • Mangmool, S., Kunpukpong, I., Kitphati, W., & Anantachoke, N. (2021). Antioxidant and anticholinesterase activities of extracts and phytochemicals of Syzygium antisepticum leaves. Molecules, 26(11), 3295. https://doi.org/10.3390/molecules26113295
  • Martins, T. L., Ramalho, T. C., Figueroa‐Villar, J. D., Flores, A. F., & Pereira, C. M. (2003). Theoretical and experimental 13C and 15N NMR investigation of guanylhydrazones in solution. Magnetic Resonance in Chemistry, 41(12), 983–988. https://doi.org/10.1002/mrc.1299
  • Mayur, B., Sandesh, S., Shruti, S., & Sung-Yum, S. (2010). Antioxidant and α-glucosidase inhibitory properties of Carpesium abrotanoides L. Journal of Medicinal Plants Research, 4(15), 1547–1553. https://doi.org/10.5897/JMPR.9000218
  • Mendes, V. I., Bartholomeusz, G. A., Ayres, M., Gandhi, V., & Salvador, J. A. (2016). Synthesis and cytotoxic activity of novel A-ring cleaved ursolic acid derivatives in human non-small cell lung cancer cells. European Journal of Medicinal Chemistry, 123, 317–331. https://doi.org/10.1016/j.ejmech.2016.07.045
  • Mlala, S., Oyedeji, A. O., Gondwe, M., & Oyedeji, O. O. (2019). Ursolic acid and its derivatives as bioactive agents. Molecules, 24(15), 2751. https://doi.org/10.3390/molecules24152751
  • Mohamed, R., Pineda, M., & Aguilar, M. (2007). Antioxidant capacity of extracts from wild and crop plants of the Mediterranean region. Journal of Food Science, 72(1), S059–S063. https://doi.org/10.1111/j.1750-3841.2006.00207.x
  • Mukhopadhyay, D., Dasgupta, P., Roy, D. S., Palchoudhuri, S., Chatterjee, I., Ali, S., & Dastidar, S. G. (2016). A sensitive ın vitro spectrophotometric hydrogen peroxide scavenging assay using 1, 10-phenanthroline. Free Radicals and Antioxidants, 6(1), 124–132. https://doi.org/10.5530/fra.2016.1.15
  • Nile, S. H., Nile, A., Liu, J., Kim, D. H., & Kai, G. (2019). Exploitation of apple pomace towards extraction of triterpenic acids, antioxidant potential, cytotoxic effects, and inhibition of clinically important enzymes. Food and Chemical Toxicology : An İnternational Journal Published for the British Industrial Biological Research Association, 131, 110563. https://doi.org/10.1016/j.fct.2019.110563
  • Nishikimi, M., Appaji, N., & Yagi, K. (1972). The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochemical and Biophysical Research Communications, 46(2), 849–854. https://doi.org/10.1016/s0006-291x(72)80218-3
  • Novotny, L., Abdel-Hamid, M. E., Hamza, H., Masterova, I., & Grancai, D. (2003). Development of LC–MS method for determination of ursolic acid: Application to the analysis of ursolic acid in Staphylea holocarpa Hemsl. Journal of Pharmaceutical and Biomedical Analysis, 31(5), 961–968. https://doi.org/10.1016/s0731-7085(02)00706-9
  • Orfali, R., Siddiqui, N. A., Alam, P., Alhowiriny, T. A., Al-Taweel, A. M., Al-Yahya, S., Majrashi, N. M., Mehmood, R., Khan, S. I., & Perveen, S. (2018). Biological evaluation of different extracts of aerial parts of nepeta deflersiana and standardization of active extracts using 8-Epi-7-deoxyloganic acid and ursolic acid by validated HPTLC method. Evidence-Based Complementary and Alternative Medicine, 2018, 1–11. https://doi.org/10.1155/2018/8790769
  • Oyaizu, M. (1986). Studies on products of browning reaction. The Japanese Journal of Nutrition and Dietetics, 44(6), 307–315. https://doi.org/10.5264/eiyogakuzashi.44.307
  • Rehman, N. U., Ahmad, N., Hussain, J., Ali, L., Hussain, H., Bakht, N., Al-Harrasi, A., & Shinwari, Z. K. (2017). One new phthalate derivative from Nepeta kurramensis. Chemistry of Natural Compounds, 53(3), 426–428. https://doi.org/10.1007/s10600-017-2014-3
  • Russo, A., Izzo, A. A., Borrelli, F., Renis, M., & Vanella, A. (2003). Free radical scavenging capacity and protective effect of Bacopa monniera L. on DNA damage. Phytotherapy Research : PTR, 17(8), 870–875. https://doi.org/10.1002/ptr.1061
  • Ryu, S. Y., Oak, M.-H., Yoon, S.-K., Cho, D.-I., Yoo, G.-S., Kim, T.-S., & Kim, K.-M. (2000). Anti-allergic and anti-inflammatory triterpenes from the herb of Prunella vulgaris. Planta Medica, 66(4), 358–360. https://doi.org/10.1055/s-2000-8531
  • Salah El Dine, R., Ma, Q., Kandil, Z. A., & El-Halawany, A. M. (2014). Triterpenes as uncompetitive inhibitors of α-glucosidase from flowers of Punica granatum L. Natural Product Research, 28(23), 2191–2194. https://doi.org/10.1080/14786419.2014.928292
  • Scalbert, A., Manach, C., Morand, C., Rémésy, C., & Jiménez, L. (2005). Dietary polyphenols and the prevention of diseases. Critical Reviews in Food Science and Nutrition, 45(4), 287–306. https://doi.org/10.1080/1040869059096
  • Seiberg, M., Paine, C., Sharlow, E., Eisinger, M., Shapiro, S. S., Andrade-Gordon, P., & Costanzo, M. (2000). Inhibition of melanosome transfer results in skin lightening1. The Journal of İnvestigative Dermatology, 115(2), 162–167. https://doi.org/10.1046/j.1523-1747.2000.00035.x
  • Senthil, S., Chandramohan, G., & Pugalendi, K. (2007). Isomers (oleanolic and ursolic acids) differ in their protective effect against isoproterenol-induced myocardial ischemia in rats. International Journal of Cardiology, 119(1), 131–133. https://doi.org/10.1016/j.ijcard.2006.07.108
  • Seo, D. Y., Lee, S. R., Heo, J.-W., No, M.-H., Rhee, B. D., Ko, K. S., Kwak, H.-B., & Han, J. (2018). Ursolic acid in health and disease. The Korean Journal of Physiology & Pharmacology: Official Journal of the Korean Physiological Society and the Korean Society of Pharmacology, 22(3), 235–248. https://doi.org/10.4196/kjpp.2018.22.3.235
  • Shao, J.-W., Dai, Y.-C., Xue, J.-P., Wang, J.-C., Lin, F.-P., & Guo, Y.-H. (2011). In vitro and in vivo anticancer activity evaluation of ursolic acid derivatives. European Journal of Medicinal Chemistry, 46(7), 2652–2661. https://doi.org/10.1016/j.ejmech.2011.03.050
  • Shishodia, S., Majumdar, S., Banerjee, S., & Aggarwal, B. B. (2003). Ursolic acid inhibits nuclear factor-κB activation induced by carcinogenic agents through suppression of IκBα kinase and p65 phosphorylation: Correlation with down-regulation of cyclooxygenase 2, matrix metalloproteinase 9, and cyclin D1. Cancer Research, 63(15), 4375–4383.
  • Siddiquea, A. A., Bhakuni, R. S., Misraa, L., Guptab, P., & Darokarb, M. P. (2017). New triglycerides from antimicrobial extracts of Nepeta hindostana weed. Indian Journal of Chemistry, 56, 542–550.
  • Silva, M. C., Torres, J. A., Castro, A. A., da Cunha, E. F., Alves de Oliveira, L. C., Corrêa, A. D., & Ramalho, T. C. (2016). Combined experimental and theoretical study on the removal of pollutant compounds by peroxidases: Affinity and reactivity toward a bioremediation catalyst. Journal of Biomolecular Structure & Dynamics, 34(9), 1839–1848. https://doi.org/10.1080/07391102.2015.1063456
  • Silva, M. G. V., Vieira, Í. G., Mendes, F. N., Albuquerque, I. L., Dos Santos, R. N., Silva, F. O., & Morais, S. M. (2008). Variation of ursolic acid content in eight Ocimum species from northeastern Brazil. Molecules (Basel, Switzerland), 13(10), 2482–2487. https://doi.org/10.3390/molecules13102482
  • Somantri, A. D., Kurnia, D., Zainuddin, A., Dharsono, H. D. A., & Satari, M. H. (2021). Action mode of ursolic acid as a natural antioxidant and inhibitor of superoxide dismutase: In vitro and in silico study. Journal of Advanced Pharmaceutical Technology & Research, 12(4), 389–394. https://doi.org/10.4103/japtr.japtr_90_21
  • Sun, J., Dong, S., Wu, Y., Zhao, H., Li, X., & Gao, W. (2017). Oleanolic acid and ursolic acid as potential inhibitors of human salivary α-amylase: İnsights from in vitro assays and in silico simulations. Journal of Molecular Modeling, 23(8), 1–11. https://doi.org/10.1007/s00894-017-3416-7
  • Sundaresan, A., Radhiga, T., & Pugalendi, K. V. (2014). Effect of ursolic acid and Rosiglitazone combination on hepatic lipid accumulation in high fat diet-fed C57BL/6J mice. European Journal of Pharmacology, 741, 297–303. https://doi.org/10.1016/j.ejphar.2014.07.032
  • Tan, N., Kaloga, M., Radtke, O. A., Kiderlen, A. F., Öksüz, S., Ulubelen, A., & Kolodziej, H. (2002). Abietane diterpenoids and triterpenoic acids from Salvia cilicica and their antileishmanial activities. Phytochemistry, 61(8), 881–884. https://doi.org/10.1016/s0031-9422(02)00361-8
  • Tezuka, Y., Stampoulis, P., Banskota, A. H., Awale, S., Tran, K. Q., Saiki, I., & Kadota, S. (2000). Constituents of the Vietnamese medicinal plant Orthosiphon stamineus. Chemical & Pharmaceutical Bulletin, 48(11), 1711–1719. https://doi.org/10.1248/cpb.48.1711
  • Thomsen, R., & Christensen, M. H. (2006). MolDock: A new technique for high-accuracy molecular docking. Journal of Medicinal Chemistry, 49(11), 3315–3321. https://doi.org/10.1021/jm051197e
  • Trentin, R., Custódio, L., Rodrigues, M. J., Moschin, E., Sciuto, K., da Silva, J. P., & Moro, I. (2020). Exploring Ulva australis Areschoug for possible biotechnological applications: In vitro antioxidant and enzymatic inhibitory properties, and fatty acids contents. Algal Research, 50, 101980. https://doi.org/10.1016/j.algal.2020.101980
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: İmproving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Tundis, R., Nadjafi, F., & Menichini, F. (2013). Angiotensin‐Converting enzyme inhibitory activity and antioxidant properties of Nepeta crassifolia Boiss & Buhse and Nepeta binaludensis Jamzad. Phytotherapy Research: PTR, 27(4), 572–580. https://doi.org/10.1002/ptr.4757
  • Valko, M., Izakovic, M., Mazur, M., Rhodes, C. J., & Telser, J. (2004). Role of oxygen radicals in DNA damage and cancer incidence. Molecular and Cellular Biochemistry, 266(1–2), 37–56. https://doi.org/10.1023/b:Mcbi.0000049134.69131.89
  • Vasquez-Ramos, C. S., Garcia-Moreno, M. G., García-García, D., Martínez-Medina, G. A., Niño-Herrera, S. A., Luna-García, H., Paciós-Michelena, S., Ilyina, A., Segura-Ceniceros, E. P., & Chávez-González, M. L. (2021). Natural extracts and compounds as ınhibitors of amylase for diabetes treatment and prevention. Functional Foods and Nutraceuticals for Human Health: Advancements in Natural Wellness and Disease Prevention, 69.
  • Wang, J., Zhao, J., Yan, Y., Liu, D., Wang, C., & Wang, H. (2020). Inhibition of glycosidase by ursolic acid: In vitro, in vivo and in silico study. Journal of the Science of Food and Agriculture, 100(3), 986–994. https://doi.org/10.1002/jsfa.10098
  • Wu, Z., Shen, L., Han, Q., Lu, J., Tang, H., Xu, X., Xu, H., Huang, F., Xie, J., He, Z., Zeng, Z., & Hu, Z. (2017). Mechanism and nature of inhibition of trypsin by ligupurpuroside A, a Ku-Ding tea extract, studied by spectroscopic and docking methods. Food Biophysics, 12(1), 78–87. https://doi.org/10.1007/s11483-016-9465-0
  • Wu, P.-P., Zhang, B.-J., Cui, X.-P., Yang, Y., Jiang, Z.-Y., Zhou, Z.-H., Zhong, Y.-Y., Mai, Y.-Y., Ouyang, Z., Chen, H.-S., Zheng, J., Zhao, S.-Q., & Zhang, K. (2017). Synthesis and biological evaluation of novel ursolic acid analogues as potential α-glucosidase inhibitors. Scientific Reports, 7(1), 1–12. https://doi.org/10.1038/srep45578
  • Wu, P.-P., Zhang, K., Lu, Y.-J., He, P., & Zhao, S.-Q. (2014). In vitro and in vivo evaluation of the antidiabetic activity of ursolic acid derivatives. European Journal of Medicinal Chemistry, 80, 502–508. https://doi.org/10.1016/j.ejmech.2014.04.073
  • Yang, X.-W., Huang, M.-Z., Jin, Y.-S., Sun, L.-N., Song, Y., & Chen, H.-S. (2012). Phenolics from Bidens bipinnata and their amylase inhibitory properties. Fitoterapia, 83(7), 1169–1175. https://doi.org/10.1016/j.fitote.2012.07.005
  • Yılmaz, A. (2011). Nepeta Sorgerae Ve Nepeta Obtusıcrena Bitkilerinin Antioksidan Ve Anti-alzheımer Bileşenlerinin İzolasyonu Ve Yapılarının Belirlenmesi. Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi.
  • Yilmaz, A., Boga, M., & Topcu, G. (2016). Novel terpenoids with potential anti-alzheimer activity from Nepeta obtusicrena. Records of Natural Products, 10(5), 530.
  • Yilmaz, A., Cağlar, P., Dirmenci, T., Gören, N., & Topcu, G. (2012). A novel isopimarane diterpenoid with acetylcholinesterase inhibitory activity from Nepeta sorgerae, an endemic species to the Nemrut Mountain. Natural Product Communications, 7(6), 1934578X1200700. https://doi.org/10.1177/1934578X1200700602
  • Yu, S.-G., Zhang, C.-J., Xu, X.-E., Sun, J.-H., Zhang, L., & Yu, P.-F. (2015). Ursolic acid derivative ameliorates streptozotocin-induced diabestic bone deleterious effects in mice. International Journal of Clinical and Experimental Pathology, 8(4), 3681.
  • Zhang, L., Mulrooney, S. B., Leung, A. F., Zeng, Y., Ko, B. B., Hausinger, R. P., & Sun, H. (2006). Inhibition of urease by bismuth (III): implications for the mechanism of action of bismuth drugs. Biometals : An İnternational Journal on the Role of Metal İons in Biology, Biochemistry, and Medicine, 19(5), 503–511. https://doi.org/10.1007/s10534-005-5449-0
  • Zhang, Y., Zhang, Z., Fawcett, J. P., & Gu, J. (2022). A novel, differential mobility spectrometry tandem mass spectrometric method for the in vivo quantitation of ursolic acid. Journal of Pharmaceutical and Biomedical Analysis, 210, 114559. https://doi.org/10.1016/j.jpba.2021.114559

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.