420
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Naringenin-4'-glucuronide as a new drug candidate against the COVID-19 Omicron variant: a study based on molecular docking, molecular dynamics, MM/PBSA and MM/GBSA

ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 5881-5894 | Received 12 Jan 2023, Accepted 19 Jun 2023, Published online: 02 Jul 2023

References

  • Ahmed, S., Mahtarin, R., Ahmed, S. S., Akter, S., Islam, M. S., Mamun, A. A., Islam, R., Hossain, M. N., Ali, M. A., Sultana, M. U. C., Parves, M. R., Ullah, M. O., & Halim, M. A. (2021). Investigating the binding affinity, interaction, and structure-activity-relationship of 76 prescription antiviral drugs targeting RdRp and Mpro of SARS-CoV-2. Journal of Biomolecular Structure & Dynamics, 39(16), 6290–6305. https://doi.org/10.1080/07391102.2020.1796804
  • Allouche, A. R. (2011). Gabedit—A graphical user interface for computational chemistry softwares. Journal of Computational Chemistry, 32(1), 174–182. https://doi.org/10.1002/JCC.21600
  • Alnajjar, R., Mostafa, A., Kandeil, A., & Al-Karmalawy, A. A. (2020). Molecular docking, molecular dynamics, and in vitro studies reveal the potential of angiotensin II receptor blockers to inhibit the COVID-19 main protease. Heliyon, 6(12), e05641. https://doi.org/10.1016/j.heliyon.2020.e05641
  • Ao, D., Lan, T., He, X., Liu, J., Chen, L., Baptista-Hon, D. T., Zhang, K., & Wei, X. (2022). SARS-CoV-2 Omicron variant: Immune escape and vaccine development. MedComm, 3(1), e126. https://doi.org/10.1002/MCO2.126
  • Badavath, V. N., Kumar, A., Samanta, P. K., Maji, S., Das, A., Blum, G., Jha, A., & Sen, A. (2022). Determination of potential inhibitors based on isatin derivatives against SARS-CoV-2 main protease (mpro): A molecular docking, molecular dynamics and structure-activity relationship studies. Journal of Biomolecular Structure & Dynamics, 40(7), 3110–3128. https://doi.org/10.1080/07391102.2020.1845800
  • Banerjee, P., Eckert, A. O., Schrey, A. K., & Preissner, R. (2018). ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Research, 46(W1), W257–W263. https://doi.org/10.1093/NAR/GKY318
  • Berman, H., Henrick, K., Nakamura, H., & Markley, J. L. (2007). The worldwide Protein Data Bank (wwPDB): ensuring a single, uniform archive of PDB data. Nucleic Acids Research, 35(Database issue), D301–D303. https://doi.org/10.1093/NAR/GKL971
  • Brüssow, H., & Brüssow, B. (2022). COVID-19: Omicron – the latest, the least virulent, but probably not the last variant of concern of SARS-CoV-2. Microbial Biotechnology, 15(7), 1927–1939. https://doi.org/10.1111/1751-7915.14064
  • Cao, Y., Wang, J., Jian, F., Xiao, T., Song, W., Yisimayi, A., Huang, W., Li, Q., Wang, P., An, R., Wang, J., Wang, Y., Niu, X., Yang, S., Liang, H., Sun, H., Li, T., Yu, Y., Cui, Q., … Xie, X. S. (2022). Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies. Nature, 602(7898), 657–663. https://doi.org/10.1038/s41586-021-04385-3
  • Cheatham, T. E., Miller, J. L., Fox, T., Darden, T. A., & Kollman, P. A. (1995). Molecular dynamics simulations on solvated biomolecular systems: The particle mesh Ewald method leads to stable trajectories of DNA, RNA, and proteins. Journal of the American Chemical Society, 117(14), 4193–4194. https://doi.org/10.1021/JA00119A045/ASSET/JA00119A045.FP.PNG_V03
  • Chekol Abebe, E., Medhin, M. T. G., Mariam, A. B. T., Dejenie, T. A., Ayele, T. M., Admasu, F. T., Muche, Z. T., & Adela, G. A. (2022). Mutational pattern, impacts and potential preventive strategies of omicron SARS-CoV-2 variant infection. Infection and Drug Resistance, 15, 1871–1887. https://doi.org/10.2147/IDR.S360103
  • Cuzzolin, A., Sturlese, M., Malvacio, I., Ciancetta, A., & Moro, S. (2015). DockBench: An integrated informatic platform bridging the gap between the robust validation of docking protocols and virtual screening simulations. Molecules (Basel, Switzerland), 20(6), 9977–9993. https://doi.org/10.3390/MOLECULES20069977
  • da Fonseca, A. M., Soares, N. B., Meirú, M. I. L., Colares, R. P., Neto, M. M., Sobrinho, A. C. N., dos Santos, H. S., & Marinho, E. S. (2022). Combined study of docking and molecular dynamics against DNV-3 SN1 protein by bixinoids. https://doi.org/10.1080/07391102.2022.2070282
  • Dallakyan, S., & Olson, A. J. (2015). Small-molecule library screening by docking with PyRx. Methods in Molecular Biology, 1263, 243–250. https://doi.org/10.1007/978-1-4939-2269-7_19
  • Elsbaey, M., Ibrahim, M. A. A., Bar, F. A., & Elgazar, A. A. (2021). Chemical constituents from coconut waste and their in silico evaluation as potential antiviral agents against SARS-CoV-2. South African Journal of Botany: Official Journal of the South African Association of Botanists = Suid-Afrikaanse Tydskrif Vir Plantkunde: Amptelike Tydskrif Van Die Suid-Afrikaanse Genootskap Van Plantkundiges, 141, 278–289. https://doi.org/10.1016/J.SAJB.2021.05.018
  • Fan, Y., Li, X., Zhang, L., Wan, S., Zhang, L., & Zhou, F. (2022). SARS-CoV-2 Omicron variant: Recent progress and future perspectives. Signal Transduction and Targeted Therapy, 7(1), 1–11. https://doi.org/10.1038/s41392-022-00997-x
  • Fayyazi, N., Mostashari-Rad, T., Ghasemi, J. B., Ardakani, M. M., & Kobarfard, F. (2022). Molecular dynamics simulation, 3D-pharmacophore and scaffold hopping analysis in the design of multi-target drugs to inhibit potential targets of COVID-19. Journal of Biomolecular Structure & Dynamics, 40(22), 11787–11808. https://doi.org/10.1080/07391102.2021.1965914
  • Field, M. J., Albe, M., Bret, C., Martin, P.-D., & Thomas, A. (2000). The dynamo library for molecular simulations using hybrid quantum mechanical and molecular mechanical potentials. Journal of Computational Chemistry, 21(12), 1088–1100. https://doi.org/10.1002/1096-987X
  • Fujita, T., Nishioka, T., & Nakajima, M. (1977). Hydrogen-bonding parameter and its significance in quantitative structure-activity studies. Journal of Medicinal Chemistry, 20(8), 1071–1081. https://doi.org/10.1021/JM00218A017/ASSET/JM00218A017.FP.PNG_V03
  • Gancia, E., Montana, J. G., & Manallack, D. T. (2001). Theoretical hydrogen bonding parameters for drug design. Journal of Molecular Graphics & Modelling, 19(3-4), 349–362. https://doi.org/10.1016/S1093-3263(00)00084-X
  • Gangadevi, S., Badavath, V. N., Thakur, A., Yin, N., De Jonghe, S., Acevedo, O., Jochmans, D., Leyssen, P., Wang, K., Neyts, J., Yujie, T., & Blum, G. (2021). Kobophenol A inhibits binding of host ACE2 receptor with spike RBD domain of SARS-CoV-2, a lead compound for blocking COVID-19. The Journal of Physical Chemistry Letters, 12(7), 1793–1802. https://doi.org/10.1021/acs.jpclett.0c03119
  • Gasteiger, J., & Marsili, M. (1980). Iterative partial equalization of orbital electronegativity—a rapid access to atomic charges. Tetrahedron, 36(22), 3219–3228. https://doi.org/10.1016/0040-4020(80)80168-2
  • Genheden, S., & Ryde, U. (2015). The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opinion on Drug Discovery, 10(5), 449–461. https://doi.org/10.1517/17460441.2015.1032936
  • Hess, B., Bekker, H., Berendsen, H. J. C., & Fraaije, J. G. E. M. (1997). LINCS: A Linear Constraint Solver for Molecular Simulations. Journal of Computational Chemistry, 18(12), 1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12
  • Hosseini, F. S., & Amanlou, M. (2020). Anti-HCV and anti-malaria agent, potential candidates to repurpose for coronavirus infection: Virtual screening, molecular docking, and molecular dynamics simulation study. Life Sciences, 258, 118205. https://doi.org/10.1016/J.LFS.2020.118205
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Irwin, J. J., & Shoichet, B. K. (2005). ZINC-A free database of commercially available compounds for virtual screening. Journal of Chemical Information and Modeling 45(1):177–182. https://doi.org/10.1021/CI049714
  • Islam, M. S., Mahmud, S., Sultana, R., & Dong, W. (2020). Identification and in silico molecular modelling study of newly isolated Bacillus subtilis SI-18 strain against S9 protein of Rhizoctonia solani. Arabian Journal of Chemistry, 13(12), 8600–8612. https://doi.org/10.1016/j.arabjc.2020.09.044
  • Jamroz, M., Kolinski, A., & Kmiecik, S. (2014). CABS-flex predictions of protein flexibility compared with NMR ensembles. Bioinformatics (Oxford, England), 30(15), 2150–2154. https://doi.org/10.1093/BIOINFORMATICS/BTU184
  • Kalathiya, U., Padariya, M., Fahraeus, R., Chakraborti, S., & Hupp, T. R. (2021). Multivalent display of SARS-CoV-2 spike (RBD domain) of COVID-19 to nanomaterial, protein ferritin nanocages. Biomolecules, 11(2), 297. https://doi.org/10.3390/biom11020297
  • Kannan, S., Shaik Syed Ali, P., & Sheeza, A. (2021). Omicron (B.1.1.529) - variant of concern - molecular profile and epidemiology: A mini review. European Review for Medical and Pharmacological Sciences, 25(24), 8019–8022. https://doi.org/10.26355/EURREV_202112_27653
  • Kirchmair, J., Markt, P., Distinto, S., Wolber, G., & Langer, T. (2008). Evaluation of the performance of 3D virtual screening protocols: RMSD comparisons, enrichment assessments, and decoy selection–what can we learn from earlier mistakes? Journal of Computer-Aided Molecular Design, 22(3–4), 213–228. https://doi.org/10.1007/S10822-007-9163-6
  • Kozakov, D., Clodfelter, K. H., Vajda, S., & Camacho, C. J. (2005). Optimal clustering for detecting near-native conformations in protein docking. Biophysical Journal, 89(2), 867–875. https://doi.org/10.1529/BIOPHYSJ.104.058768
  • Kumar, B. H., Manandhar, S., Mehta, C. H., Nayak, U. Y., & Pai, K. S. R. (2022). Structure-based docking, pharmacokinetic evaluation, and molecular dynamics-guided evaluation of traditional formulation against SARS-CoV-2 spike protein receptor bind domain and ACE2 receptor complex. Chemicke Zvesti, 76(2), 1063–1083. https://doi.org/10.1007/s11696-021-01917-z
  • Kumar, Y., Singh, H., & Patel, C. N. (2020). In silico prediction of potential inhibitors for the main protease of SARS-CoV-2 using molecular docking and dynamics simulation based drug-repurposing. Journal of Infection and Public Health, 13(9), 1210–1223. https://doi.org/10.1016/J.JIPH.2020.06.016
  • Lan, J., Ge, J., Yu, J., Shan, S., Zhou, H., Fan, S., Zhang, Q., Shi, X., Wang, Q., Zhang, L., & Wang, X. (2020). Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature, 581(7807), 215–220. https://doi.org/10.1038/S41586-020-2180-5
  • Liu, Y. (2023). Integrative network pharmacology and in silico analyses identify the anti-omicron SARS-CoV-2 potential of eugenol. Heliyon, 9(3), e13853. https://doi.org/10.1016/j.heliyon.2023.e13853
  • Liu, L., Iketani, S., Guo, Y., Chan, J. F.-W., Wang, M., Liu, L., Luo, Y., Chu, H., Huang, Y., Nair, M. S., Yu, J., Chik, K. K.-H., Yuen, T. T.-T., Yoon, C., To, K. K.-W., Chen, H., Yin, M. T., Sobieszczyk, M. E., Huang, Y., … Ho, D. D. (2022). Striking antibody evasion manifested by the Omicron variant of SARS-CoV-2. Nature, 602(7898), 676–681. https://doi.org/10.1038/s41586-021-04388-0
  • Majumder, R., & Mandal, M. (2022). Screening of plant-based natural compounds as a potential COVID-19 main protease inhibitor: An in silico docking and molecular dynamics simulation approach. Journal of Biomolecular Structure & Dynamics, 40(2), 696–711. https://doi.org/10.1080/07391102.2020.1817787/SUPPL_FILE/TBSD_A_1817787_SM7020.PDF
  • Mannar, D., Saville, J. W., Zhu, X., Srivastava, S. S., Berezuk, A. M., Tuttle, K. S., Marquez, A. C., Sekirov, I., & Subramaniam, S. (2022). SARS-CoV-2 Omicron variant: Antibody evasion and cryo-EM structure of spike protein-ACE2 complex. Science (New York, NY), 375(6582), 760–764. https://doi.org/10.1126/SCIENCE.ABN7760
  • Mishra, D., Maurya, R. R., Kumar, K., Munjal, N. S., Bahadur, V., Sharma, S., Singh, P., & Bahadur, I. (2021). Structurally modified compounds of hydroxychloroquine, remdesivir and tetrahydrocannabinol against main protease of SARS-CoV-2, a possible hope for COVID-19: Docking and molecular dynamics simulation studies. Journal of Molecular Liquids, 335, 116185. https://doi.org/10.1016/J.MOLLIQ.2021.116185
  • Mukherjee, S., Balius, T. E., & Rizzo, R. C. (2010). Docking validation resources: Protein family and ligand flexibility experiments. Journal of Chemical Information and Modeling, 50(11), 1986–2000. https://doi.org/10.1021/CI1001982/SUPPL_FILE/CI1001982_SI_001.PDF
  • Oany, A. R., Mia, M., Pervin, T., Junaid, M., Hosen, S. M. Z., & Moni, M. A. (2020). Design of novel viral attachment inhibitors of the spike glycoprotein (S) of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) through virtual screening and dynamics. International Journal of Antimicrobial Agents, 56(6), 106177. https://doi.org/10.1016/J.IJANTIMICAG.2020.106177
  • O'Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., & Hutchison, G. R. (2011). Open Babel: An open chemical toolbox. Journal of Cheminformatics, 3(33), 1-14. https://doi.org/10.1186/1758-2946-3-33
  • Pang, J., Gao, S., Sun, Z., & Yang, G. (2021). Discovery of small molecule PLpro inhibitor against COVID-19 using structure-based virtual screening, molecular dynamics simulation, and molecular mechanics/Generalized Born surface area (MM/GBSA) calculation. Structural Chemistry, 32(2), 879–886. https://doi.org/10.1007/S11224-020-01665-Y
  • Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R. D., Kalé, L., & Schulten, K. (2005). Scalable molecular dynamics with NAMD. Journal of Computational Chemistry, 26(16), 1781–1802. https://doi.org/10.1002/JCC.20289
  • Poli, G., Martinelli, A., & Tuccinardi, T. (2016). Reliability analysis and optimization of the consensus docking approach for the development of virtual screening studies. Journal of Enzyme Inhibition and Medicinal Chemistry, 31(sup2), 167–173. https://doi.org/10.1080/14756366.2016.1193736/SUPPL_FILE/IENZ_A_1193736_SM2163.PDF
  • Rafi, M. O., Bhattacharje, G., Al-Khafaji, K., Taskin-Tok, T., Alfasane, M. A., Das, A. K., Parvez, M. A. K., & Rahman, M. S. (2022). Combination of QSAR, molecular docking, molecular dynamic simulation and MM-PBSA: Analogues of lopinavir and favipiravir as potential drug candidates against COVID-19. Journal of Biomolecular Structure & Dynamics, 40(8), 3711–3730. https://doi.org/10.1080/07391102.2020.1850355/SUPPL_FILE/TBSD_A_1850355_SM5903.DOCX
  • Rahmani, S., & Rezaei, N. (2022). Omicron (B.1.1.529) variant: Development, dissemination, and dominance. Journal of Medical Virology, 94(5), 1787–1788. https://doi.org/10.1002/JMV.27563
  • Rakib, A., Sami, S. A., Mimi, N. J., Chowdhury, M. M., Eva, T. A., Nainu, F., Paul, A., Shahriar, A., Tareq, A. M., Emon, N. U., Chakraborty, S., Shil, S., Mily, S. J., Ben Hadda, T., Almalki, F. A., & Emran, T. B. (2020). Immunoinformatics-guided design of an epitope-based vaccine against severe acute respiratory syndrome coronavirus 2 spike glycoprotein. Computers in Biology and Medicine, 124, 103967. https://doi.org/10.1016/J.COMPBIOMED.2020.103967
  • Rashdan, H. R. M., & Abdelmonsef, A. H. (2022). In silico study to identify novel potential thiadiazole-based molecules as anti-Covid-19 candidates by hierarchical virtual screening and molecular dynamics simulations. Structural Chemistry, 33(5), 1727–1739. https://doi.org/10.1007/S11224-022-01985-1/TABLES/3
  • Ravi, L., & Kannabiran, K. (2016). A handbook on protein-ligand docking tool: AutoDock4. Innovare Journal of Medical Sciences, 4(3), 1-6. https://www.researchgate.net/publication/304657251_A_Handbook_On_Protein-Ligand_Docking_Tool_AutoDock4
  • Sabzian-Molaei, F., Khalili, M. A. N., Sabzian-Molaei, M., Shahsavarani, H., Pour, A. F., Rad, A. M., & Hadi, A. (2022). Urtica dioica Agglutinin: A plant protein candidate for inhibition of SARS-COV-2 receptor-binding domain for control of Covid19 Infection. Plos One, 17(7), e0268156. https://doi.org/10.1371/journal.pone.0268156
  • Sen Gupta, P. S., Biswal, S., Panda, S. K., Ray, A. K., & Rana, M. K. (2022). Binding mechanism and structural insights into the identified protein target of COVID-19 and importin-α with in-vitro effective drug ivermectin. Journal of Biomolecular Structure & Dynamics, 40(5), 2217–2226. https://doi.org/10.1080/07391102.2020.1839564
  • Sen, D., Debnath, P., Debnath, B., Bhaumik, S., & Debnath, S. (2022). Identification of potential inhibitors of SARS-CoV-2 main protease and spike receptor from 10 important spices through structure-based virtual screening and molecular dynamic study. Journal of Biomolecular Structure & Dynamics, 40(2), 941–962. https://doi.org/10.1080/07391102.2020.1819883
  • Sepay, N., Sekar, A., Halder, U. C., Alarifi, A., & Afzal, M. (2021). Anti-COVID-19 terpenoid from marine sources: A docking, admet and molecular dynamics study. Journal of Molecular Structure, 1228, 129433. https://doi.org/10.1016/J.MOLSTRUC.2020.129433
  • Shoichet, B. K., & Kuntz, I. D. (1991). Protein docking and complementarity. Journal of Molecular Biology, 221(1), 327–346. https://doi.org/10.1016/0022-2836(91)80222-G
  • Sterling, T., & Irwin, J. J. (2015). ZINC 15 - ligand discovery for everyone. Journal of Chemical Information and Modeling, 55(11), 2324–2337. https://doi.org/10.1021/ACS.JCIM.5B00559/ASSET/IMAGES/LARGE/CI-2015-00559J_0005.JPEG
  • Sultana, J., Crisafulli, S., Gabbay, F., Lynn, E., Shakir, S., & Trifirò, G. (2020). Challenges for drug repurposing in the COVID-19 pandemic era. Frontiers in Pharmacology, 11, 588654. https://doi.org/10.3389/FPHAR.2020.588654/BIBTEX
  • Taka, E., Yilmaz, S. Z., Golcuk, M., Kilinc, C., Aktas, U., Yildiz, A., & Gur, M. (2021). Critical interactions between the SARS-CoV-2 spike glycoprotein and the human ACE2 receptor. The Journal of Physical Chemistry. B, 125(21), 5537–5548. https://doi.org/10.1021/ACS.JPCB.1C02048
  • Thakur, A., Sharma, G., Badavath, V. N., Jayaprakash, V., Merz, K. M., Blum, G., & Acevedo, O. (2022). Primer for designing main protease (Mpro) inhibitors of SARS-CoV-2. The Journal of Physical Chemistry Letters, 13(25), 5776–5786. https://doi.org/10.1021/ACS.JPCLETT.2C01193
  • Tian, D., Sun, Y., Xu, H., & Ye, Q. (2022). The emergence and epidemic characteristics of the highly mutated SARS-CoV-2 Omicron variant. Journal of Medical Virology, 94(6), 2376–2383. https://doi.org/10.1002/JMV.27643
  • Tingle, B. I., Tang, K. G., Castanon, M., Gutierrez, J. J., Khurelbaatar, M., Dandarchuluun, C., Moroz, Y. S., & Irwin, J. J. (2023). ZINC-22—a free multi-billion-scale database of tangible compounds for ligand discovery. Journal of Chemical Information and Modeling, 63(4), 1166–1176. https://doi.org/10.1021/ACS.JCIM.2C01253/ASSET/IMAGES/LARGE/CI2C01253_0005.JPEG
  • Tuccinardi, T., Poli, G., Romboli, V., Giordano, A., & Martinelli, A. (2014). Extensive consensus docking evaluation for ligand pose prediction and virtual screening studies. Journal of Chemical Information and Modeling, 54(10), 2980–2986. https://doi.org/10.1021/CI500424N/SUPPL_FILE/CI500424N_SI_001.PDF
  • Tutunchi, H., Naeini, F., Ostadrahimi, A., & Hosseinzadeh-Attar, M. J. (2020). Naringenin, a flavanone with antiviral and anti-inflammatory effects: A promising treatment strategy against COVID-19. Phytotherapy Research: PTR, 34(12), 3137–3147. https://doi.org/10.1002/PTR.6781
  • Valdés-Tresanco, M. S., Valdés-Tresanco, M. E., Valiente, P. A., & Moreno, E. (2021). Gmx_MMPBSA: A new tool to perform end-state free energy calculations with GROMACS. Journal of Chemical Theory and Computation, 17(10), 6281–6291. https://doi.org/10.1021/ACS.JCTC.1C00645/ASSET/IMAGES/LARGE/CT1C00645_0005.JPEG
  • Vardhan, S., & Sahoo, S. K. (2020). In silico ADMET and molecular docking study on searching potential inhibitors from limonoids and triterpenoids for COVID-19. Computers in Biology and Medicine, 124, 103936. https://doi.org/10.1016/J.COMPBIOMED.2020.103936
  • Venkatesan, P. (2021). Repurposing drugs for treatment of COVID-19. The Lancet Respiratory Medicine, 9(7), e63. https://doi.org/10.1016/S2213-2600(21)00270-8
  • Vieira, T. F., & Sousa, S. F. (2019). Comparing AutoDock and Vina in ligand/decoy discrimination for virtual screening. Applied Sciences, 9(21), 4538. https://doi.org/10.3390/app9214538
  • Villas-Boas, G. R., Rescia, V. C., Paes, M. M., Lavorato, S. N., Magalhães-Filho, M. F. d., Cunha, M. S., Simões, R. d. C., Lacerda, R. B. d., Freitas-Júnior, R. S. d., Ramos, B. H. d S., Mapeli, A. M., Henriques, M. d S. T., Freitas, W. R. d., Lopes, L. A. F., Oliveira, L. G. R., Silva, J. G. d., Silva-Filho, S. E., Silveira, A. P. S. d., Leão, K. V., … Oesterreich, S. A. (2020). The New Coronavirus (SARS-CoV-2): A comprehensive review on immunity and the application of bioinformatics and molecular modeling to the discovery of potential anti-SARS-CoV-2 agents. Molecules, 25(18), 4086. https://doi.org/10.3390/molecules25184086
  • WHO. (2021). Classification of Omicron (B.1.1.529): SARS-CoV-2 Variant of Concern. https://www.who.int/news/item/26-11-2021-classification-of-omicron-(b.1.1.529)-sars-cov-2-variant-of-concern
  • WHO. (2022). WHO Coronavirus (COVID-19) Dashboard | WHO Coronavirus (COVID-19) dashboard with vaccination data. https://covid19.who.int/
  • Wright, J. D., Sargsyan, K., Wu, X., Brooks, B. R., & Lim, C. (2013). Protein-protein docking using EMAP in CHARMM and support vector machine: Application to Ab/Ag complexes. Journal of Chemical Theory and Computation, 9(9), 4186–4194. https://doi.org/10.1021/CT400508S/ASSET/IMAGES/LARGE/CT-2013-00508S_0002.JPEG
  • Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., Chen, X., Hou, T., & Cao, D. (2021). ADMETlab 2.0: an integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Research, 49(W1), W5–W14. https://doi.org/10.1093/NAR/GKAB255
  • Yan, R., Zhang, Y., Li, Y., Xia, L., Guo, Y., & Zhou, Q. (2020). Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science (New York, NY), 367(6485), 1444–1448. https://doi.org/10.1126/SCIENCE.ABB2762/SUPPL_FILE/ABB2762S1.MP4
  • Zeng, W., Jin, L., Zhang, F., Zhang, C., & Liang, W. (2018). Naringenin as a potential immunomodulator in therapeutics. Pharmacological Research, 135, 122–126. https://doi.org/10.1016/J.PHRS.2018.08.002

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.