153
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Host-guest interaction of tryptophane with acid-functionalized calix[4]pyrrole: a fluorescence-based study

, ORCID Icon, , ORCID Icon &
Pages 5895-5902 | Received 18 Apr 2023, Accepted 19 Jun 2023, Published online: 28 Jun 2023

References

  • Baker, A., Inverarity, R., Charlton, M., & Richmond, S. (2003). Detecting river pollution using fluorescence spectrophotometry: Case studies from the Ouseburn, NE England. Environmental Pollution (Barking, Essex : 1987), 124(1), 57–70. https://doi.org/10.1016/S0269-7491(02)00408-6
  • Beck, J. (2007). The importance of amino acids in the adult diet of male tropical rainforest butterflies. Oecologia, 151(4), 741–747. https://doi.org/10.1007/s00442-006-0613-y
  • Bhatt, K. D., Shah, H. D., & Panchal, M. (2017). A switch-off fluorescence probe towards Pb(II) and cu(II) ions based on a calix[4]pyrrole bearing amino-quinoline group. Luminescence : The Journal of Biological and Chemical Luminescence, 32(8), 1398–1404. https://doi.org/10.1002/bio.3336
  • Cabana, N., Schulte, E., Nuñez, J. L., & Quaino, P. (2023). Theoretical studies of calixarene derivatives as receptors for transition metals. Chemical Physics Letters, 811, 140210. https://doi.org/10.1016/j.cplett.2022.140210
  • Chandra, P., Singh, J., Singh, A., Srivastava, A., Goyal, R. N., & Shim, Y. B. (2013). Gold Nanoparticles and Nanocomposites in Clinical Diagnostics Using Electrochemical Methods. Journal of Nanoparticles, 2013, 1–12. https://doi.org/10.1155/2013/535901
  • Darjee, S. M., Bhatt, K. D., Panchal, U. S., & Jain, V. K. (2017). Scrupulous recognition of biologically important acids by fluorescent “turn off-on” mechanism of thaicalix reduced silver nanoparticles. Chinese Chemical Letters, 28(2), 312–318. https://doi.org/10.1016/j.cclet.2016.07.026
  • Desai, A. L., Bhatt, K., Modi, K. M., Patel, N. P., Panchal, M., Kongor, A., Patel, C. N., & Liška, A. (2022). Calix [4] pyrrole based scrupulous probe for track on of tryptophan: Host-guest interaction, in silico modeling and molecular docking insights. Chemical Physics, 554, 111426. https://doi.org/10.1016/j.chemphys.2021.111426
  • Desai, A. L., Patel, N. P., Parikh, J. H., Modi, K. M., & Bhatt, K. D. (2022). In Silico Studies and Design of Scrupulous Novel Sensor for Nitro Aromatics Compounds and Metal Ions Detection. Journal of Fluorescence, 32(2), 483–504. https://doi.org/10.1007/s10895-021-02866-2
  • Dey, S., Modi, K., Panchal, U., Panchal, M., & Jain, V. K. (2021). Detection of small molecular toxins using azacalix[4]arene architecture and its theoretical investigations. Journal of Molecular Liquids, 337, 116337. https://doi.org/10.1016/j.molliq.2021.116337
  • Ding, Q. W., Qian, T. W., & Zhang, M. G. (2011). The Preparation of Several Novel Organic Material of Neutral Molecules Recognition. Applied Mechanics and Materials, 148-149, 660–663. https://doi.org/10.4028/www.scientific.net/AMM.148-149.660
  • Douteau-Guével, N., Coleman, A. W., Morel, J.-P., & Morel-Desrosiers, N. (1998). Complexation of basic amino acids by water-soluble calixarene sulphonates as a study of the possiblemechanisms of recognition of calixarene sulphonates by proteins. Journal of Physical Organic Chemistry, 11(10), 693–696. https://doi.org/10.1002/(SICI)1099-1395(1998100)11:10<693::AID-POC18>3.0.CO;2-8
  • EL-Shorbagy, H. I., Elsebaei, F., Hammad, S. F., & El-Brashy, A. M. (2019). Optimization and modeling of a green dual detected RP-HPLC method by UV and fluorescence detectors using two level full factorial design for simultaneous determination of sofosbuvir and ledipasvir: Application to average content and uniformity of dosage unit testing. Microchemical Journal, 147, 374–392. https://doi.org/10.1016/j.microc.2019.03.039
  • Fan, M., Lu, D., You, R., Chen, C., Lu, Y., Wu, Y., Shen, H., & Feng, S. (2020). Highly sensitive detection of tryptophan (Trp) in serum based on diazo-reaction coupling with Surface-Enhanced Raman Scattering and colorimetric assay. Analytica Chimica Acta, 1119, 52–59. https://doi.org/10.1016/j.aca.2020.04.039
  • Fateh, F., Yildirim, A., Bhatti, A. A., & Yilmaz, M. (2021). A New Benzothiazin-functionalized Calix[4]arene-based Fluorescent Chemosensor for the Selective Detection of Co2+ Ion. Journal of Fluorescence, 31(4), 1075–1083. https://doi.org/10.1007/s10895-021-02745-w
  • He, Q., Tian, Y., Wu, Y., Liu, J., Li, G., Deng, P., & Chen, D. (2019). Electrochemical Sensor for Rapid and Sensitive Detection of Tryptophan by a Cu2O Nanoparticles-Coated Reduced Graphene Oxide Nanocomposite. Biomolecules, 9(5), 176. https://doi.org/10.3390/biom9050176
  • Hua, L.-C., Kim, E., McCurry, D. L., Huang, C., & Mitch, W. A. (2020). Novel Chlorination Byproducts of Tryptophan: Initial High-Yield Transformation Products versus Small Molecule Disinfection Byproducts. Environmental Science & Technology Letters, 7(3), 149–155. https://doi.org/10.1021/acs.estlett.0c00011
  • Kaddurah‐Daouk, R., Rozen, S., Matson, W., Han, X., Hulette, C. M., Burke, J. R., Doraiswamy, P. M., & Welsh‐Bohmer, K. A. (2011). Metabolomic changes in autopsy‐confirmed Alzheimer’s disease. Alzheimer’s & Dementia : The Journal of the Alzheimer’s Association, 7(3), 309–317. https://doi.org/10.1016/j.jalz.2010.06.001
  • Kałużna-Czaplińska, J., Gątarek, P., Chirumbolo, S., Chartrand, M. S., & Bjørklund, G. (2019). How important is tryptophan in human health? Critical Reviews in Food Science and Nutrition, 59(1), 72–88. https://doi.org/10.1080/10408398.2017.1357534
  • Kennett, G. A., & Joseph, M. H. (1981). The functional importance of increased brain tryptophan in the serotonergic response to restraint stress. Neuropharmacology, 20(1), 39–43. https://doi.org/10.1016/0028-3908(81)90039-3
  • Krošl, I., Otković, E., Nikšić-Franjić, I., Colasson, B., Reinaud, O., Višnjevac, A., & Piantanida, I. (2022). Impact of positive charge and ring-size on the interactions of calixarenes with DNA, RNA and nucleotides. New Journal of Chemistry, 46(15), 6860–6869. https://doi.org/10.1039/D2NJ00061J
  • Kumar, Ashwani, Mohan, Brij, Parikh, Jaymin, Modi, Krunal, Virender,. (2023). The spectroscopic and computational study of anthracene based chemosensor - Ag + interactions.Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 285, 121889. https://doi.org/10.1016/j.saa.2022.121889
  • Liu, Y.-C., Wang, Y.-Y., Tian, H.-W., Liu, Y., & Guo, D.-S. (2016). Fluorescent nanoassemblies between tetraphenylethenes and sulfonatocalixarenes: A systematic study of calixarene-induced aggregation. Organic Chemistry Frontiers, 3(1), 53–61. https://doi.org/10.1039/C5QO00326A
  • Makwana, B. A., Vyas, D. J., Bhatt, K. D., & Jain, V. K. (2017). Selective sensing of copper (II) and leucine using fluorescent turn on – off mechanism from calix[4]resorcinarene modified gold nanoparticles. Sensors and Actuators B: Chemical, 240, 278–287. https://doi.org/10.1016/j.snb.2016.08.128
  • Mishra, D. R., Darjee, S. M., Bhatt, K. D., Modi, K. M., & Jain, V. K. (2015). Calix protected gold nanobeacon as turn-off fluorescent sensor for phenylalanine. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 82(3-4), 425–436. https://doi.org/10.1007/s10847-015-0509-8
  • Moulaee, K., & Neri, G. (2021). Electrochemical Amino Acid Sensing: A Review on Challenges and Achievements. Biosensors, 11(12), 502. https://doi.org/10.3390/bios11120502
  • Parikh, J., Bhatt, K., Modi, K., Patel, N., Desai, A., Kumar, S., & Mohan, B. (2022). A versatile enrichment of functionalized calixarene as a facile sensor for amino acids. Luminescence, 37(3), 370–390. https://doi.org/10.1002/bio.4186
  • Pundi, A., Chang, C.-J., Chen, J., Hsieh, S.-R., & Lee, M.-C. (2021). A chiral carbazole based sensor for sequential “on-off-on” fluorescence detection of Fe3+ and tryptophan/histidine. Sensors and Actuators B: Chemical, 328, 129084. https://doi.org/10.1016/j.snb.2020.129084
  • Rather, I. A., Ali, R., & Ali, A. (2022). Recent developments in calix[4]pyrrole (C4P)-based supramolecular functional systems. Organic Chemistry Frontiers, 9(22), 6416–6440. https://doi.org/10.1039/D2QO01298G
  • Rather, I. A., Wagay, S. A., Hasnain, M. S., & Ali, R. (2019). New dimensions in calix[4]pyrrole: The land of opportunity in supramolecular chemistry. RSC Advances, 9(66), 38309–38344. https://doi.org/10.1039/C9RA07399J
  • Rawat, V., Baheti, A., Tiwari, O. S., & Vigalok, A. (2023). Carbazole-fused calixarene cavities: Single and mixed AIEgen systems for NO detection. Chemical Communications (Cambridge, England), 59(37), 5543–5546. https://doi.org/10.1039/D3CC01181J
  • Salazar, A., Keusgen, M., & von Hagen, J. (2016). Amino acids in the cultivation of mammalian cells. Amino Acids, 48(5), 1161–1171. https://doi.org/10.1007/s00726-016-2181-8
  • Sayin, S. (2022). A highly selective fluorescence probe for Co2+ or Cu2+ detection based on a new tetraquinoline-substituted calix[4]arene derivative. Tetrahedron, 122, 132960. https://doi.org/10.1016/j.tet.2022.132960
  • Spisso, B. F., de Oliveira e Jesus, A. L., de Araújo Júnior, M. A. G., & Monteiro, M. A. (2007). Validation of a high-performance liquid chromatographic method with fluorescence detection for the simultaneous determination of tetracyclines residues in bovine milk. Analytica Chimica Acta, 581(1), 108–117. https://doi.org/10.1016/j.aca.2006.08.004
  • Sutariya, P. G., Pandya, A., Lodha, A., & Menon, S. K. (2014). A unique fluorescence biosensor for selective detection of tryptophan and histidine. The Analyst, 139(19), 4794–4798. https://doi.org/10.1039/C4AN00829D
  • Uttam, B., Polepalli, S., & Rao, C. P. (2023). Synthetic strategies for the functionalization of upper or lower rim of supramolecular calix [4] arene platform. Arkivoc, 2022(6), 254–279. https://doi.org/10.24820/ark.5550190.p011.939
  • Vagadiya, N., Odedara, M., Joshi, A., Manhas, A., & Mukherjee, N. (2022). Recent Advances in Fluorescent Chemosensors for Aromatic Amino Acids Detection, 15, 221–232. https://doi.org/10.1007/978-981-19-2572-6_17
  • Wang, Q., Vasilescu, A., Subramanian, P., Vezeanu, A., Andrei, V., Coffinier, Y., Li, M., Boukherroub, R., & Szunerits, S. (2013). Simultaneous electrochemical detection of tryptophan and tyrosine using boron-doped diamond and diamond nanowire electrodes. Electrochemistry Communications, 35, 84–87. https://doi.org/10.1016/j.elecom.2013.08.010
  • Ward, J. S. T., Lapworth, D. J., Read, D. S., Pedley, S., Banda, S. T., Monjerezi, M., Gwengweya, G., & MacDonald, A. M. (2021). Tryptophan-like fluorescence as a high-level screening tool for detecting microbial contamination in drinking water. The Science of the Total Environment, 750, 141284. https://doi.org/10.1016/j.scitotenv.2020.141284
  • Xu, W., Feng, H., Zhao, W., Huang, C., Redshaw, C., Tao, Z., & Xiao, X. (2020). Amino acid recognition by a fluorescent chemosensor based on cucurbit[8]uril and acridine hydrochloride. Analytica Chimica Acta, 1135, 142–149. https://doi.org/10.1016/j.aca.2020.09.028
  • Yang, J., Li, Z., Tan, W., Wu, D., Tao, Y., & Kong, Y. (2018). Construction of an electrochemical chiral interface by the self-assembly of chiral calix[4]arene and cetyltrimethylammonium bromide for recognition of tryptophan isomers. Electrochemistry Communications, 96, 22–26. https://doi.org/10.1016/j.elecom.2018.09.005
  • Yang, S., Gu, L., Wu, F., Dai, X., Xu, F., Li, Q., Fang, X., Yu, S., & Ding, C.-F. (2022). The chirality determination of amino acids by forming complexes with cyclodextrins and metal ions using ion mobility spectrometry, and a DFT calculation. Talanta, 243, 123363. https://doi.org/10.1016/j.talanta.2022.123363
  • Yuksel, N., & Fellah, M. F. (2022). Hydrogen adsorption and sensing properties of p-tert-butylcalix[4]arene and its transition metal complexes: A DFT study. International Journal of Hydrogen Energy, 48, 23348–23361. https://doi.org/10.1016/j.ijhydene.2022.12.012
  • Zhang, K., Fei, W., Ji, J., & Yang, Y. (2021). Degradation of Tryptophan by UV Irradiation: Influencing Parameters and Mechanisms. Water, 13(17), 2368. https://doi.org/10.3390/w13172368
  • Zhang, X., Li, J., Feng, N., Luo, L., Dai, Z., Yang, L., Tian, D., & Li, H. (2014). A tryptophan responsive fluorescent and wettable dual-signal switch. Organic & Biomolecular Chemistry, 12(35), 6824–6830. https://doi.org/10.1039/C4OB00792A
  • Zhou, Y., & Yoon, J. (2012). Recent progress in fluorescent and colorimetric chemosensors for detection ofamino acids. Chemical Society Reviews, 41(1), 52–67. https://doi.org/10.1039/C1CS15159B

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.