155
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

DNA/BSA interaction, anticancer, antimicrobial and catalytic applications of synthesis of nitro substituted pyrimidine-based Schiff base ligand capped nickel nanoparticles

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 5931-5945 | Received 10 Nov 2022, Accepted 20 Jun 2023, Published online: 02 Jul 2023

References

  • Abarca-Cabrera, L., Fraga-García, P., & Berensmeier, S. (2021). Bio-nano interactions: Binding proteins, polysaccharides, lipids and nucleic acids onto magnetic nanoparticles. Biomaterials Research, 25(1), 1-18. https://doi.org/10.1186/s40824-021-00212-y
  • Adwin Jose, P., Dhaveethu Raja, J., Sankarganesh, M., & Rajesh, J. (2018). Evaluation of antioxidant, DNA targeting, antimicrobial and cytotoxic studies of imine capped copper and nickel nanoparticles. Journal of Photochemistry and Photobiology B: Biology, 178, 143–151. https://doi.org/10.1016/j.jphotobiol.2017.11.005
  • Adwin Jose, P., Sankarganesh, M., Dhaveethu Raja, J., Senthilkumar, G. S., Nandini Asha, R., Raja, S. J., & Sheela, C. D. (2022). Bio-inspired nickel nanoparticles of pyrimidine-Schiff base: In vitro anticancer, BSA and DNA interactions, molecular docking and antioxidant studies. Journal of Biomolecular Structure and Dynamics, 40(21), 10715-10729. https://doi.org/10.1080/07391102.2021.1947382
  • Alishah, H., Pourseyedi, S., Ebrahimipour, S. Y., Mahani, S. E., & Rafiei, N. (2017). Green synthesis of starch-mediated CuO nanoparticles: Preparation, characterization, antimicrobial activities and in vitro MTT assay against MCF-7 cell line. Rendiconti Lincei, 28, 65–71. https://doi.org/10.1007/s12210-016-0574-y
  • Badr, Y., Abd El-Wahed, M. G., & Mahmoud, M. A. (2008). Photocatalytic degradation of methyl red dye by silica nanoparticles. Journal of Hazardous Materials, 154(1–3), 245–253. https://doi.org/10.1016/j.jhazmat.2007.10.020
  • Couto, G. G., Klein, J. J., Schreiner, W. H., Mosca, D. H., de Oliveira, A. J. A., & Zarbin, A. J. G. (2007). Nickel nanoparticles obtained by a modified polyol process: Synthesis, characterization, and magnetic properties. Journal of Colloid and Interface Science, 311(2), 461–468. https://doi.org/10.1016/j.jcis.2007.03.045
  • Dong, T.-Y., Wu, H. H., Huang, C., Song, J. M., Chen, I. G., & Kao, T. H. (2009). Octanethiolated Cu and Cu2O nanoparticles as ink to form metallic copper film. Applied Surface Science, 255(6), 3891–3896. https://doi.org/10.1016/j.apsusc.2008.10.085
  • Fiss, B. G., Richard, A. J., Douglas, G., Kojic, M., Friščić, T., & Moores, A. (2021). Mechanochemical methods for the transfer of electrons and exchange of ions: Inorganic reactivity from nanoparticles to organometallics. Chemical Society Reviews, 50(14), 8279–8318. https://doi.org/10.1039/d0cs00918k
  • Gentili, P. L., Ortica, F., & Favaro, G. (2008). Static and dynamic interaction of a naturally occurring photochromic molecule with bovine serum albumin studied by UV − Visible absorption and fluorescence spectroscopy. The Journal of Physical Chemistry. B, 112(51), 16793–16801. https://doi.org/10.1021/jp805922g
  • Ghosh, M. K., Sahu, S., Gupta, I., & Ghorai, T. K. (2020). Green synthesis of copper nanoparticles from an extract of Jatropha curcas leaves: Characterization, optical properties, CT-DNA binding and photocatalytic activity. RSC Advances, 10(37), 22027–22035. https://doi.org/10.1039/d0ra03186k
  • Goulet, P. J. G., & Lennox, R. B. (2010). New insights into Brust − Schiffrin metal nanoparticle synthesis. Journal of the American Chemical Society, 132(28), 9582–9584. https://doi.org/10.1021/ja104011b
  • Jose, P. A., Sankarganesh, M., Raja, J. D., & Saleem, S. (2020). Pyrimidine derivative schiff base ligand stabilized copper and nickel nanoparticles by two step phase transfer method; in vitro anticancer, antioxidant, anti-microbial and DNA interactions. Journal of Fluorescence, 30(3), 471–482. https://doi.org/10.1007/s10895-020-02510-5
  • Jose, P. A., Sankarganesh, M., Raja, J. D., &Senthilkumar, G. S. (2020). Synthesis of methoxy substituted pyrimidine derivative imine stabilized copper nanoparticles in organic phase and its biological evaluation. Journal of Molecular Liquids, 305, 112821. https://doi.org/10.1016/j.molliq.2020.112821.
  • Jose, P. A., Sankarganesh, M., Raja, J. D., Sakthivel, A., Annaraj, J., Jeyaveeramadhavi, S., & Girija, A. (2022). Spectrophotometric and fluorometric detection of DNA/BSA interaction, antimicrobial, anticancer, antioxidant and catalytic activities of biologically active methoxy substituted pyrimidine-ligand capped copper nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 267, 120454. https://doi.org/10.1016/j.saa.2021.120454
  • Kanagavalli, C., Sankarganesh, M., Dhaveethu, R., & Kalanithi, M. (2019). Spectral, NLO and antimicrobial studies of Co(II), Ni(II) and Cu(II) complexes of Schiff base ligands of 2-amino-6-nitrobenzothiazole. Journal of the Serbian Chemical Society, 84(3), 267–275. https://doi.org/10.2298/jsc180521101k
  • Kaur, J., Saxena, M., & Rishi, N. (2021). An overview of recent advances in biomedical applications of click chemistry. Bioconjugate Chemistry, 32(8), 1455–1471. https://doi.org/10.1021/acs.bioconjchem.1c00247
  • Kelly, J. M., Tossi, A. B., McConnell, D. J., & OhUigin, C., (1985). A study of the interactions of some polypyridylruthenium(II) complexes with DNA using fluorescence spectroscopy, topoisomerisation and thermal denaturation. Nucleic Acids Research, 13, 6017–6034. https://doi.org/10.1093/nar/13.17.6017
  • Sonia, Komal, Kukreti, S., Kaushik, M. (2018). Exploring the DNA damaging potential of chitosan and citrate-reduced gold nanoparticles: Physicochemical approach. International Journal of Biological Macromolecules, 115, 801–810. https://doi.org/10.1016/j.ijbiomac.2018.04.115
  • Lu, L., Zou, S., & Fang, B. (2021). The critical impacts of ligands on heterogeneous nanocatalysis: A review. ACS Catalysis, 11(10), 6020–6058. https://doi.org/10.1021/acscatal.1c00903
  • Mensor, L. L., Menezes, F. S., Leitão, G. G., Reis, A. S., Santos, T. C., Coube, C. S., & Leitao, S. G. (2001). Screening of Brazilian plant extracts for antioxidant activity by the use of DPPH free radical method. Phytotherapy Research, 15(2), 127–130. https://doi.org/10.1002/ptr.687
  • Mirza, A. U., Kareem, A., Nami, S. A. A., Bhat, S. A., Mohammad, A., & Nishat, N. (2019). Malus pumila and Juglen regia plant species mediated zinc oxide nanoparticles: Synthesis, spectral characterization, antioxidant and antibacterial studies. Microbial Pathogenesis, 129, 33–241. https://doi.org/10.1016/j.micpath.2019.02.020
  • Mukundan, D., Mohankumar, R., & Vasanthakumari, R. (2015). Green synthesis of silver nanoparticles using leaves extract of Bauhinia Tomentosa Linn and its in vitro anticancer potential. Materials Today, 2(9), 4309–4316. https://doi.org/10.1016/j.matpr.2015.10.014
  • Nagaraj, R., Murugesan, S., Jeyaraj, D. R., Arumugam, S., Shunmugasundaram, G., & Radhakrishnan, N. A. (2022). Spectroscopic studies on DNA interaction and anticancer activities of pharmacologically active pyrimidine derivative mixed ligand Co(II) and Ni(II) complexes. Journal of Molecular Structure, 1252, 132079. https://doi.org/10.1016/j.molstruc.2021.132079
  • Pandey, A., & Manivannan, R. (2015). A study on synthesis of nickel nanoparticles using chemical reduction technique. Recent Patents on Nanomedicine, 5(1), 33–37. https://doi.org/10.2174/1877912305666150417232717
  • Rajiv, P., Rajeshwari, S., &Venckatesh, R. (2013 ). Bio-Fabrication of zinc oxide nanoparticles using leaf extract of Parthenium hysterophorus L. and its size-dependent antifungal activity against plant fungal pathogens. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 112, 84–387. https://doi.org/10.1016/j.saa.2013.04.072
  • Roy, P. S., & Bhattacharya, S. K. (2014). Size-controlled synthesis, characterization and electrocatalytic behaviors of polymer-protected nickel nanoparticles: A comparison with respect to two polymers. RSC Advances. 4(27), 13892–13900. https://doi.org/10.1039/C4RA00426D
  • Sankarganesh, M., Adwin Jose, P., Dhaveethu Raja, J., Kesavan, M. P., Vadivel, M., Rajesh, J., Jeyamurugan, R., Senthil Kumar, R., & Karthikeyan, S. (2017). New pyrimidine based ligand capped gold and platinum nano particles: Synthesis, characterization, antimicrobial, antioxidant, DNA interaction and in vitro anticancer activities. Journal of Photochemistry and Photobiology. B, Biology, 176, 44–53. https://doi.org/10.1016/j.jphotobiol.2017.09.013
  • Sankarganesh, M., Dhaveethu Raja, J., Adwin Jose, P. R., Vinoth Kumar, G. G., Rajesh, J., & Rajasekaran, R. (2018). Spectroscopic, computational, antimicrobial, DNA interaction, in vitro anticancer and molecular docking properties of biochemically active Cu(II) and Zn(II) complexes of pyrimidine-ligand. Journal of Fluorescence, 28(4), 975–985. https://doi.org/10.1007/s10895-018-2261-0
  • Shah, A., Nosheen, E., Munir, S., Badshah, A., Qureshi, R., Rehman, Z., Muhammad, N., & Hussain, H. (2013). Characterization and DNA binding studies of unexplored imidazolidines by electronic absorption spectroscopy and cyclic voltammetry. Journal of Photochemistry and Photobiology B: Biology, 120, 90–97. https://doi.org/10.1016/j.jphotobiol.2012.12.015
  • Shahraki, S., Delarami, H. S., Mansouri-Torshizi, H., & Nouri, H. (2021). Investigation of kinetics and thermodynamics in the interaction process between two pyridine derived Schiff base complexes and catalase. Journal of Molecular Liquids, 334, 116527. https://doi.org/10.1016/j.molliq.2021.116527
  • Sharma, V., Chotia, C., Tarachand, T., Ganesan, V., &Okram, G. S. (2017). Influence of particle size and dielectric environment on the dispersion behaviour and surface plasmon in nickel nanoparticles. Physical Chemistry Chemical Physics, 19(21), 14096–14106. https://doi.org/10.1039/c7cp01769c
  • Sidoryk, K., Michalak, O., Kubiszewski, M., Leś, A., Cybulski, M., Stolarczyk, E. U., & Doubsky, J. (2020). Synthesis of thiol derivatives of biological active compounds for nanotechnology application. Molecules, 25(15), 3470. https://doi.org/10.3390/molecules25153470
  • Soares, S., Mateus, N., & de Freitas, V. (2007). Interaction of different polyphenols with bovine serum albumin (BSA) and human salivary α-amylase (HSA) by fluorescence quenching. Journal of Agricultural and Food Chemistry, 55(16), 6726–6735. https://doi.org/10.1021/jf070905x
  • Song, T., Gao, F., Guo, S., Zhang, Y., Li, S., You, H., & Du, Y. (2021). A review of the role and mechanism of surfactants in the morphology control of metal nanoparticles. Nanoscale, 13(7), 3895–3910. https://doi.org/10.1039/d0nr07339c
  • Sroka, Z., & Cisowski, W. H. P. S (2003). Hydrogen peroxide scavenging, antioxidant and anti-radical activity of some phenolic acids. Food and Chemical Toxicology, 41(6), 753–758. https://doi.org/10.1016/s0278-6915(02)00329-0
  • Tabassum, N., Kumar, D., Verma, D., Bohara, R. A., & Singh, M. P. (2021). Zirconium oxide (ZrO2) nanoparticles from antibacterial activity to cytotoxicity: A next-generation of multifunctional nanoparticles. Materials Today Communications, 26, 102156. https://doi.org/10.1016/j.mtcomm.2021.102156.
  • Tosato, M., & Di Marco, V. (2019). Metal chelation therapy and Parkinson’s disease: A critical review on the thermodynamics of complex formation between relevant metal ions and promising or established drugs. Biomolecules, 9(7), 269. https://doi.org/10.3390/biom9070269
  • Ullrich, A. (2016). Influence of synthesis parameters on size, shape, composition and magnetic properties of transition metal oxide nanoparticles. Journal of Nanomedicine & Nanotechnology, 07(04). https://doi.org/10.4172/2157-7439.C1.040
  • Vadivel, M., Sankarganesh, M., Raja, J. D., Rajesh, J., Mohanasundaram, D., & Alagar, M. (2019). Bioactive constituents and bio-waste derived chitosan/xylan based biodegradable hybrid nanocomposite for sensitive detection of fish freshness. Food Packaging and Shelf Life, 22, 100384. https://doi.org/10.1016/j.fpsl.2019.100384
  • Velika, B., & Kron, I. (2012). Antioxidant properties of benzoic acid derivatives against superoxide radical. Free Radicals and Antioxidants, 2(4), 62–67. https://doi.org/10.5530/ax.2012.4.11
  • Wu, Q., Chen, X., Jia, L., Wang, Y., Sun, Y., Huang, X., Shen, Y., & Wang, J. (2017). Ultrasonic irradiation enhanced the ability of fluorescein-DA-Fe(III) on sonodynamic and sonocatalytic damages of DNA molecules. Ultrasonics Sonochemistry, 39, 1–11. https://doi.org/10.1016/j.ultsonch.2017.04.005
  • Wu, Z. G., Munoz, M., & Montero, O. (2010). The synthesis of nickel nanoparticles by hydrazine reduction. Advanced Powder Technology, 21(2), 165–168. https://doi.org/10.1016/j.apt.2009.10.012
  • Zhou, Y.-G., Haddou, B., Rees, N. V., & Compton, R. G. (2012). The charge transfer kinetics of the oxidation of silver and nickel nanoparticles via particle–electrode impact electrochemistry. Physical Chemistry Chemical Physics, 14(41), 14354–14357. https://doi.org/10.1039/c2cp42940c
  • Zolezzi, S., Decinti, A., & Spodine, E. (1999). Syntheses and characterization of copper(II) complexes with Schiff-base ligands derived from ethylenediamine, diphenylethylenediamine and nitro, bromo and methoxy salicylaldehyde. Polyhedron, 18(6), 897–904. https://doi.org/10.1016/s0277-5387(98)00376-3

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.