279
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

In-silico screening and identification of potential drug-like compounds for dengue-associated thrombocytopenia from Carica papaya leaf extracts

, , , , , & show all
Pages 5963-5981 | Received 28 Mar 2023, Accepted 21 Jun 2023, Published online: 02 Jul 2023

References

  • Aier, I., Varadwaj, P. K., & Raj, U. (2016). Structural insights into conformational stability of both wild-type and mutant EZH2 receptor. Scientific Reports, 6, 34984. https://doi.org/10.1038/srep34984
  • Akey, D. L., Brown, W. C., Dutta, S., Konwerski, J., Jose, J., Jurkiw, T. J., DelProposto, J., Ogata, C. M., Skiniotis, G., Kuhn, R. J., & Smith, J. L. (2014). Flavivirus NS1 structures reveal surfaces for associations with membranes and the immune system. Science, 343(6173), 881–885. https://doi.org/10.1126/science.1247749
  • Akey, D. L., Brown, W. C., Jose, J., Kuhn, R. J., & Smith, J. L. (2015). Structure-guided insights on the role of NS1 in flavivirus infection. BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology, 37(5), 489–494. https://doi.org/10.1002/bies.201400182
  • Anjum, V., Arora, P., Ansari, S. H., Najmi, A. K., & Ahmad, S. (2017). Antithrombocytopenic and immunomodulatory potential of metabolically characterized aqueous extract of Carica papaya leaves. Pharmaceutical Biology, 55(1), 2043–2056. https://doi.org/10.1080/13880209.2017.1346690
  • Assinger, A. (2014). Platelets and infection – an emerging role of platelets in viral infection. Frontiers in Immunology, 5, 649. https://doi.org/10.3389/fimmu.2014.00649
  • Avirutnan, P., Hauhart, R. E., Somnuke, P., Blom, A. M., Diamond, M. S., & Atkinson, J. P. (2011). Binding of flavivirus nonstructural protein NS1 to C4b binding protein modulates complement activation. Journal of Immunology, 187(1), 424–433. https://doi.org/10.4049/jimmunol.1100750
  • Avirutnan, P., Punyadee, N., Noisakran, S., Komoltri, C., Thiemmeca, S., Auethavornanan, K., Jairungsri, A., Kanlaya, R., Tangthawornchaikul, N., Puttikhunt, C., Pattanakitsakul, S. N., Yenchitsomanus, P. T., Mongkolsapaya, J., Kasinrerk, W., Sittisombut, N., Husmann, M., Blettner, M., Vasanawathana, S., Bhakdi, S., & Malasit, P. (2006). Vascular leakage in severe dengue virus infections: A potential role for the nonstructural viral protein NS1 and complement. The Journal of Infectious Diseases, 193(8), 1078–1088. https://doi.org/10.1086/500949
  • Ayoola, P. B., & Adeyeye, A. (2010). Phytochemical and nutrient evaluation of Carica papaya (pawpaw) leaves. Ijrras, 5(3), 325–328.
  • Backman, T. W., Cao, Y., & Girke, T. (2011). ChemMine tools: An online service for analyzing and clustering small molecules. Nucleic Acids Research, 39(Web Server issue), W486–W491. https://doi.org/10.1093/nar/gkr320
  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000). The protein data bank. Nucleic Acids Research, 28(1), 235–242. https://doi.org/10.1093/nar/28.1.235
  • Bhanot, A., & Sundriyal, S. (2021). Physicochemical profiling and comparison of research antiplasmodials and advanced stage antimalarials with oral drugs. ACS Omega. 6(9), 6424–6437. https://doi.org/10.1021/acsomega.1c00104
  • Bhatt, D. C., Mitaliya, K. D., Pandya, N. A., & Baxi, U. S. (2001). Herbal therapy for jaundice. Advances in Plant Sciences, 14(1), 123–126.
  • Bhatt, S., Gething, P. W., Brady, O. J., Messina, J. P., Farlow, A. W., Moyes, C. L., Drake, J. M., Brownstein, J. S., Hoen, A. G., Sankoh, O., Myers, M. F., George, D. B., Jaenisch, T., Wint, G. R., Simmons, C. P., Scott, T. W., Farrar, J. J., & Hay, S. I. (2013). The global distribution and burden of dengue. Nature, 496(7446), 504–507. https://doi.org/10.1038/nature12060
  • Bickerton, G. R., Paolini, G. V., Besnard, J., Muresan, S., & Hopkins, A. L. (2012). Quantifying the chemical beauty of drugs. Nature Chemistry, 4(2), 90–98. https://doi.org/10.1038/nchem.1243
  • Blitvich, B. J., Scanlon, D., Shiell, B. J., Mackenzie, J. S., Pham, K., & Hall, R. A. (2001). Determination of the intramolecular disulfide bond arrangement and biochemical identification of the glycosylation sites of the nonstructural protein NS1 of Murray Valley encephalitis virus. The Journal of General Virology, 82(Pt 9), 2251–2256. https://doi.org/10.1099/0022-1317-82-9-2251
  • Bradacs, G., Heilmann, J., & Weckerle, C. S. (2011). Medicinal plant use in Vanuatu: A comparative ethnobotanical study of three islands. Journal of Ethnopharmacology, 137(1), 434–448. https://doi.org/10.1016/j.jep.2011.05.050
  • Bunney, P. E., Zink, A. N., Holm, A. A., Billington, C. J., & Kotz, C. M. (2017). Orexin activation counteracts decreases in nonexercise activity thermogenesis (NEAT) caused by high-fat diet. Physiology & Behavior, 176, 139–148. https://doi.org/10.1016/j.physbeh.2017.03.040
  • Chao, C. H., Wu, W. C., Lai, Y. C., Tsai, P. J., Perng, G. C., Lin, Y. S., & Yeh, T. M. (2019). Dengue virus nonstructural protein 1 activates platelets via toll-like receptor 4, leading to thrombocytopenia and hemorrhage. PLOS Pathogens, 15(4), e1007625. https://doi.org/10.1371/journal.ppat.1007625
  • Chen, H. R., Lai, Y. C., & Yeh, T. M. (2018). Dengue virus non-structural protein 1: A pathogenic factor, therapeutic target, and vaccine candidate. Journal of Biomedical Science, 25(1), 58. https://doi.org/10.1186/s12929-018-0462-0
  • Crooks, A. J., Lee, J. M., Easterbrook, L. M., Timofeev, A. V., & Stephenson, J. R. (1994). The NS1 protein of tick-borne encephalitis virus forms multimeric species upon secretion from the host cell. The. Journal of General Virology, 75(12), 3453–3460. https://doi.org/10.1099/0022-1317-75-12-3453
  • Dang, T. T., Pham, M. H., Bui, H. V., & Le, D. V. (2020). First full-length genome sequence of dengue virus serotype 2 circulating in Vietnam in 2017. Infection and Drug Resistance, 13, 4061–4068. https://doi.org/10.2147/IDR.S275645
  • de Azeredo, E. L., Monteiro, R. Q., & de-Oliveira Pinto, L. M. (2015). Thrombocytopenia in dengue: Interrelationship between virus and the imbalance between coagulation and fibrinolysis and inflammatory mediators. Mediators of Inflammation, 2015, 313842. https://doi.org/10.1155/2015/313842
  • Dharmarathna, S. L., Wickramasinghe, S., Waduge, R. N., Rajapakse, R. P., & Kularatne, S. A. (2013). Does Carica papaya leaf-extract increase the platelet count? An experimental study in a murine model. Asian Pacific Journal of Tropical Biomedicine, 3(9), 720–724. https://doi.org/10.1016/S2221-1691(13)60145-8
  • Elahi, M., Islam, M. M., Noguchi, K., Yohda, M., Toh, H., & Kuroda, Y. (2014). Computational prediction and experimental characterization of a "size switch type repacking" during the evolution of dengue envelope protein domain III (ED3). Biochimica et Biophysica Acta, 1844(3), 585–592. https://doi.org/10.1016/j.bbapap.2013.12.013
  • Ertl, P., Rohde, B., & Selzer, P. (2000). Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. Journal of Medicinal Chemistry, 43(20), 3714–3717. https://doi.org/10.1021/jm000942e
  • European Centre for Disease Prevention and Control (ECDC). Dengue worldwide overview. https://www.ecdc.europa.eu/en/dengue-monthly [Accessed 9 March 2023].
  • Friesner, R. A., Murphy, R. B., Repasky, M. P., Frye, L. L., Greenwood, J. R., Halgren, T. A., Sanschagrin, P. C., & Mainz, D. T. (2006). Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. Journal of Medicinal Chemistry, 49(21), 6177–6196. https://doi.org/10.1021/jm051256o
  • Gao, B., Zhang, J., & Xie, L. (2018). Structure analysis of effective chemical compounds against dengue viruses isolated from Isatis tinctoria. Journal Canadien Des Maladies Infectieuses et de la Microbiologie Medicale [The Canadian Journal of Infectious Diseases & Medical Microbiology], 2018, 3217473. https://doi.org/10.1155/2018/3217473
  • Ghersi, D., & Sanchez, R. (2009). Improving accuracy and efficiency of blind protein-ligand docking by focusing on predicted binding sites. Proteins, 74(2), 417–424. https://doi.org/10.1002/prot.22154
  • Ghosh, I., & Talukdar, P. (2019). Molecular docking and pharmacokinetics study for selected leaf phytochemicals from Carica papaya Linn. against dengue virus protein, NS2B/NS3 protease. World Scientific News, 124(2), 264–278.
  • Gogna, N., Hamid, N., & Dorai, K. (2015). Metabolomic profiling of the phytomedicinal constituents of Carica papaya L. leaves and seeds by 1H NMR spectroscopy and multivariate statistical analysis. Journal of Pharmaceutical and Biomedical Analysis, 115, 74–85. https://doi.org/10.1016/j.jpba.2015.06.035
  • Gubler, D. J. (1998). Dengue and dengue hemorrhagic fever. Clinical Microbiology Reviews, 11(3), 480–496. https://doi.org/10.1128/CMR.11.3.480
  • Gurung, S., & Skalko-Basnet, N. (2009). Wound healing properties of Carica papaya latex: In vivo evaluation in mice burn model. Journal of Ethnopharmacology, 121(2), 338–341. https://doi.org/10.1016/j.jep.2008.10.030
  • Guzman, M. G., Halstead, S. B., Artsob, H., Buchy, P., Farrar, J., Gubler, D. J., Hunsperger, E., Kroeger, A., Margolis, H. S., Martínez, E., Nathan, M. B., Pelegrino, J. L., Simmons, C., Yoksan, S., & Peeling, R. W. (2010). Dengue: A continuing global threat. Nature Reviews. Microbiology, 8(12 Suppl), S7–S16. https://doi.org/10.1038/nrmicro2460
  • Hajdu, Z., & Hohmann, J. (2012). An ethnopharmacological survey of the traditional medicine utilized in the community of Porvenir, Bajo Paraguá Indian Reservation, Bolivia. Journal of Ethnopharmacology, 139(3), 838–857. https://doi.org/10.1016/j.jep.2011.12.029
  • Hariono, M., Julianus, J., Djunarko, I., Hidayat, I., Adelya, L., Indayani, F., Auw, Z., Namba, G., & Hariyono, P. (2021). The future of Carica papaya leaf extract as an herbal medicine product. Molecules, 26(22), 6922. https://doi.org/10.3390/molecules26226922
  • Huet, J., Looze, Y., Bartik, K., Raussens, V., Wintjens, R., & Boussard, P. (2006). Structural characterization of the papaya cysteine proteinases at low pH. Biochemical and Biophysical Research Communications, 341(2), 620–626. https://doi.org/10.1016/j.bbrc.2005.12.210
  • Imaga, N. O. A., Gbenle, G. O., Okochi, V. I., Akanbi, S. O., Edeoghon, S. O., Oigbochie, V., Kehinde, M. O., & Bamiro, S. B. (2009). Antisickling property of Carica papaya leaf extract. African Journal of Biochemistry Research, 3(4), 102–106.
  • Jacobson, M. P., Pincus, D. L., Rapp, C. S., Day, T. J., Honig, B., Shaw, D. E., & Friesner, R. A. (2004). A hierarchical approach to all-atom protein loop prediction. Proteins, 55(2), 351–367. https://doi.org/10.1002/prot.10613
  • Jassim, S. A., & Naji, M. A. (2003). Novel antiviral agents: A medicinal plant perspective. Journal of Applied Microbiology, 95(3), 412–427. https://doi.org/10.1046/j.1365-2672.2003.02026.x
  • Jayasinghe, C. D., Gunasekera, D. S., De Silva, N., Jayawardena, K. K. M., & Udagama, P. V. (2017). Mature leaf concentrate of Sri Lankan wild type Carica papaya Linn. modulates nonfunctional and functional immune responses of rats. BMC Complementary and Alternative Medicine, 17(1), 230. https://doi.org/10.1186/s12906-017-1742-z
  • Jorgensen, W. L., & Duffy, E. M. (2002). Prediction of drug solubility from structure. Advanced Drug Delivery Reviews, 54(3), 355–366. https://doi.org/10.1016/s0169-409x(02)00008-x
  • Julianti, T., Oufir, M., & Hamburger, M. (2014). Quantification of the antiplasmodial alkaloid carpaine in papaya (Carica papaya) leaves. Planta Medica, 80(13), 1138–1142. https://doi.org/10.1055/s-0034-1382948
  • Jyoti, M. A., Barua, N., Hossain, M. S., Hoque, M., Bristy, T. A., Mahmud, S., Kamruzzaman, K., Adnan, M., Chy, M. N. U., Paul, A., Hossain, M. E., Emran, T. B., & Simal-Gandara, J. (2020). Unravelling the biological activities of the Byttneria pilosa leaves using experimental and computational approaches. Molecules, 25(20), 4737. https://doi.org/10.3390/molecules25204737
  • Khor, B. K., Chear, N. J., Azizi, J., & Khaw, K. Y. (2021). Chemical composition, antioxidant and cytoprotective potentials of Carica papaya leaf extracts: A comparison of supercritical fluid and conventional extraction methods. Molecules, 26(5), 1489. https://doi.org/10.3390/molecules26051489
  • Kim, S., Thiessen, P. A., Bolton, E. E., Chen, J., Fu, G., Gindulyte, A., Han, L., He, J., He, S., Shoemaker, B. A., Wang, J., Yu, B., Zhang, J., & Bryant, S. H. (2016). PubChem substance and compound databases. Nucleic Acids Research, 44(D1), D1202–D1213. https://doi.org/10.1093/nar/gkv951
  • Klotz, I. M. (1973). Physiochemical aspects of drug-protein interactions: A general perspective. Annals of the New York Academy of Sciences, 226, 18–35. https://doi.org/10.1111/j.1749-6632.1973.tb20465.x
  • Krishnan, K. A., Latha, M. S., & Sruthy, B. (2018). A computational analysis of the therapeutic effect of Carica papaya leaves against dengue fever. Indian Journal of Science Research, 18(2), 55–61.
  • Kuhn, R. J., Zhang, W., Rossmann, M. G., Pletnev, S. V., Corver, J., Lenches, E., Jones, C. T., Mukhopadhyay, S., Chipman, P. R., Strauss, E. G., Baker, T. S., & Strauss, J. H. (2002). Structure of dengue virus: Implications for flavivirus organization, maturation, and fusion. Cell, 108(5), 717–725. https://doi.org/10.1016/s0092-8674(02)00660-8
  • Kularatne, S. A. (2015). Dengue fever. BMJ, 351, h4661. https://doi.org/10.1136/bmj.h4661
  • Kumar, A., Mehta, V., Raj, U., Varadwaj, P. K., Udayabanu, M., Yennamalli, R. M., & Singh, T. R. (2019). Computational and in-vitro validation of natural molecules as potential acetylcholinesterase inhibitors and neuroprotective agents. Current Alzheimer Research, 16(2), 116–127. https://doi.org/10.2174/1567205016666181212155147
  • Laskowski, R. A. (2022). PDBsum1: A standalone program for generating PDBsum analyses. Protein Science, 31(12), e4473. https://doi.org/10.1002/pro.4473
  • Laskowski, R. A., & Swindells, M. B. (2011). LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery. Journal of Chemical Information and Modeling, 51(10), 2778–2786. https://doi.org/10.1021/ci200227u
  • Lipinski, C. A. (2004). Lead- and drug-like compounds: The rule-of-five revolution. Drug Discovery Today. Technologies, 1(4), 337–341. https://doi.org/10.1016/j.ddtec.2004.11.007
  • Maisarah, A. M., Amira, N. B., Asmah, R., & Fauziah, O. (2013). Antioxidant analysis of different parts of Carica papaya. International Food Research Journal, 20(3), 1043.
  • Malavige, G. N., Fernando, S., Fernando, D. J., & Seneviratne, S. L. (2004). Dengue viral infections. Postgraduate Medical Journal, 80(948), 588–601. https://doi.org/10.1136/pgmj.2004.019638
  • Mani, N. D. J. (2021). In silico protein–ligand docking studies against dengue protein phytochemicals exhibiting inhibitory activity of Nilavembu kudineeer and papaya leaf. Journal of Natural Remedies, 21(10), 34–47.
  • Mirza, S. B., Salmas, R. E., Fatmi, M. Q., & Durdagi, S. (2016). Virtual screening of eighteen million compounds against dengue virus: Combined molecular docking and molecular dynamics simulations study. Journal of Molecular Graphics & Modelling, 66, 99–107. https://doi.org/10.1016/j.jmgm.2016.03.008
  • Mohd Abd Razak, M. R., Mohmad Misnan, N., Md Jelas, N. H., Norahmad, N. A., Muhammad, A., Ho, T. C. D., Jusoh, B., Sastu, U. R., Zainol, M., Wasiman, M. I., Muhammad, H., Thayan, R., & Syed Mohamed, A. F. (2018). The effect of freeze-dried Carica papaya leaf juice treatment on NS1 and viremia levels in dengue fever mice model. BMC Complementary and Alternative Medicine, 18(1), 320. https://doi.org/10.1186/s12906-018-2390-7
  • Morris, G. M., Huey, R., & Olson, A. J. (2008). Using AutoDock for ligand-receptor docking. Current Protocols in Bioinformatics, Chapter 8, 24(1) https://doi.org/10.1002/0471250953.bi0814s24
  • Mukhopadhyay, S., Kuhn, R. J., & Rossmann, M. G. (2005). A structural perspective of the flavivirus life cycle. Nature Reviews. Microbiology, 3(1), 13–22. https://doi.org/10.1038/nrmicro1067
  • Mustafa, M. S., Rasotgi, V., Jain, S., & Gupta, V. (2015). Discovery of fifth serotype of dengue virus (DENV-5): A new public health dilemma in dengue control. Medical Journal, Armed Forces India, 71(1), 67–70. https://doi.org/10.1016/j.mjafi.2014.09.011
  • Nandini, C., Madhunapantula, S. V., Bovilla, V. R., Ali, M., Mruthunjaya, K., Santhepete, M. N., & Jayashree, K. (2021). Platelet enhancement by Carica papaya L. leaf fractions in cyclophosphamide induced thrombocytopenic rats is due to elevated expression of CD110 receptor on megakaryocytes. Journal of Ethnopharmacology, 275, 114074. https://doi.org/10.1016/j.jep.2021.114074
  • Newman, D. J., & Cragg, G. M. (2020). Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. Journal of Natural Products, 83(3), 770–803. https://doi.org/10.1021/acs.jnatprod.9b01285
  • Nouroz, F. A. I. S. A. L., Mehboob, M., Mobin, T., & Khan, S. A. J. I. D. (2021). In silico exploitation of antiviral phytochemicals against dengue. Pakistan Journal of Botany, 53(1), 309–319. https://doi.org/10.30848/PJB2021-1(17)
  • O'Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., & Hutchison, G. R. (2011). Open Babel: An open chemical toolbox. Journal of Cheminformatics, 3(1), 33. https://doi.org/10.1186/1758-2946-3-33
  • Oishi, K., Saito, M., Mapua, C. A., & Natividad, F. F. (2007). Dengue illness: Clinical features and pathogenesis. Journal of Infection and Chemotherapy, 13(3), 125–133. https://doi.org/10.1007/s10156-007-0516-9
  • Ojha, A., Nandi, D., Batra, H., Singhal, R., Annarapu, G. K., Bhattacharyya, S., Seth, T., Dar, L., Medigeshi, G. R., Vrati, S., Vikram, N. K., & Guchhait, P. (2017). Platelet activation determines the severity of thrombocytopenia in dengue infection. Scientific Reports, 7, 41697. https://doi.org/10.1038/srep41697
  • Ong, H. C., & Norzalina, J. (1999). Malay herbal medicine in Gemencheh, Negri Sembilan, Malaysia. Fitoterapia, 70(1), 10–14. https://doi.org/10.1016/S0367-326X(98)00023-9
  • Otsuki, N., Dang, N. H., Kumagai, E., Kondo, A., Iwata, S., & Morimoto, C. (2010). Aqueous extract of Carica papaya leaves exhibits anti-tumor activity and immunomodulatory effects. Journal of Ethnopharmacology, 127(3), 760–767. https://doi.org/10.1016/j.jep.2009.11.024
  • Owoyele, B. V., Adebukola, O. M., Funmilayo, A. A., & Soladoye, A. O. (2008). Anti-inflammatory activities of ethanolic extract of Carica papaya leaves. Inflammopharmacology, 16(4), 168–173. https://doi.org/10.1007/s10787-008-7008-0
  • Park, B. S., Song, D. H., Kim, H. M., Choi, B. S., Lee, H., & Lee, J. O. (2009). The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature, 458(7242), 1191–1195. https://doi.org/10.1038/nature07830
  • Perera, R., & Kuhn, R. J. (2008). Structural proteomics of dengue virus. Current Opinion in Microbiology, 11(4), 369–377. https://doi.org/10.1016/j.mib.2008.06.004
  • Pierce, B. G., Wiehe, K., Hwang, H., Kim, B. H., Vreven, T., & Weng, Z. (2014). ZDOCK server: Interactive docking prediction of protein-protein complexes and symmetric multimers. Bioinformatics, 30(12), 1771–1773. https://doi.org/10.1093/bioinformatics/btu097
  • Pryor, M. J., & Wright, P. J. (1994). Glycosylation mutants of dengue virus NS1 protein. The Journal of General Virology, 75(5), 1183–1187. https://doi.org/10.1099/0022-1317-75-5-1183
  • Pryor, M. J., Gualano, R. C., Lin, B., Davidson, A. D., & Wright, P. J. (1998). Growth restriction of dengue virus type 2 by site-specific mutagenesis of virus-encoded glycoproteins. Journal of General Virology, 79(11), 2631–2639. https://doi.org/10.1099/0022-1317-79-11-2631
  • Qamar, M. T., Mumtaz, A., Naseem, R., Ali, A., Fatima, T., Jabbar, T., Ahmad, Z., & Ashfaq, U. A. (2014). Molecular docking based screening of plant flavonoids as dengue NS1 inhibitors. Bioinformation, 10(7), 460–465. https://doi.org/10.6026/97320630010460
  • Radhakrishnan, N., Lam, K. W., & Norhaizan, M. E. (2017). Molecular docking analysis of Carica papaya Linn constituents as antiviral agent. International Food Research Journal, 24(4).
  • Rahmatullah, M., Jahan, R., Azam, F. M., Hossan, S., Mollik, M. A., & Rahman, T. (2011). Folk medicinal uses of Verbenaceae family plants in Bangladesh. African Journal of Traditional, Complementary, and Alternative Medicines, 8(5 Suppl), 53–65. https://doi.org/10.4314/ajtcam.v8i5S.15
  • Resman, N., Vasl, J., Oblak, A., Pristovsek, P., Gioannini, T. L., Weiss, J. P., & Jerala, R. (2009). Essential roles of hydrophobic residues in both MD-2 and toll-like receptor 4 in activation by endotoxin. The Journal of Biological Chemistry, 284(22), 15052–15060. https://doi.org/10.1074/jbc.M901429200
  • Sastry, G. M., Adzhigirey, M., Day, T., Annabhimoju, R., & Sherman, W. (2013). Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. Journal of Computer-Aided Molecular Design, 27(3), 221–234. https://doi.org/10.1007/s10822-013-9644-8
  • Schrödinger Release 2021-2: LigPrep. (2021). Schrödinger, LLC. New York, NY.
  • Schrödinger Release 2021-2: Maestro. (2021). Schrödinger, LLC. New York, NY.
  • Schrödinger Release 2021-2: QikProp. (2021). Schrödinger, LLC. New York, NY.
  • Schrödinger Release 2022-1. (2021). Desmond molecular dynamics system. D. E. Shaw Research; Maestro-Desmond interoperability tools. Schrödinger.
  • Seigler, D. S., Pauli, G. F., Nahrstedt, A., & Leen, R. (2002). Cyanogenic allosides and glucosides from Passiflora edulis and Carica papaya. Phytochemistry, 60(8), 873–882. https://doi.org/10.1016/s0031-9422(02)00170-x
  • Senthilvel, P., Lavanya, P., Kumar, K. M., Swetha, R., Anitha, P., Bag, S., Sarveswari, S., Vijayakumar, V., Ramaiah, S., & Anbarasu, A. (2013). Flavonoid from Carica papaya inhibits NS2B-NS3 protease and prevents Dengue 2 viral assembly. Bioinformation, 9(18), 889–895. https://doi.org/10.6026/97320630009889
  • Simmons, C. P., Farrar, J. J., Nguyen, v C., & Wills, B. (2012). Dengue. The New England Journal of Medicine, 366(15), 1423–1432. https://doi.org/10.1056/NEJMra1110265
  • Singh, B. (2016). The Carica papaya leaf in modern therapy-efficacy as antiparasitic, antiplasmodial, antiviral and anti-cancer agent. https://www.researchgate.net/publication/293556504_THE_CARICA_PAPAYA_LEAF_IN_MODERN_THERAPY_-_Efficacy_as_antiparasitic_antiplasmodial_antiviral_and_anti-cancer_agent [Accessed 19 March 2023].
  • Somnuke, P., Hauhart, R. E., Atkinson, J. P., Diamond, M. S., & Avirutnan, P. (2011). N-linked glycosylation of dengue virus NS1 protein modulates secretion, cell-surface expression, hexamer stability, and interactions with human complement. Virology, 413(2), 253–264. https://doi.org/10.1016/j.virol.2011.02.022
  • Steinbeck, C., Han, Y., Kuhn, S., Horlacher, O., Luttmann, E., & Willighagen, E. (2003). The Chemistry Development Kit (CDK): An open-source Java library for chemo- and bioinformatics. Journal of Chemical Information and Computer Sciences, 43(2), 493–500. https://doi.org/10.1021/ci025584y
  • Subenthiran, S., Choon, T. C., Cheong, K. C., Thayan, R., Teck, M. B., Muniandy, P. K., Afzan, A., Abdullah, N. R., & Ismail, Z. (2013). Carica papaya leaves juice significantly accelerates the rate of increase in platelet count among patients with dengue fever and dengue haemorrhagic fever. Evidence-Based Complementary and Alternative Medicine, 2013, 616737. https://doi.org/10.1155/2013/616737
  • Sundarmurthy, D., Jayanthi, C. R., & Lakshmaiah, K. C. (2017). Effect of Carica papaya leaf extract on platelet count in chemotherapy-induced thrombocytopenic patients: A preliminary study. National Journal of Physiology, Pharmacy and Pharmacology, 7(6), 1. https://doi.org/10.5455/njppp.2017.7.0202628022017
  • Tang, C. S. (1979). New macrocyclic, Δ1-piperideine alkaloids from papaya leaves: Dehydrocarpaine I and II. Phytochemistry, 18(4), 651–652. https://doi.org/10.1016/S0031-9422(00)84279-X
  • Teh, B. P., Ahmad, N. B., Mohamad, S. B., Tan, T. Y. C., Mohd Abd Razak, M. R. B., Afzan, A. B., & Syed Mohamed, A. F. B. (2022). Carica papaya leaf juice for dengue: A scoping review. Nutrients, 14(8), 1584. https://doi.org/10.3390/nu14081584
  • Thomas, S. J., & Yoon, I. K. (2019). A review of Dengvaxia®: Development to deployment. Human Vaccines & Immunotherapeutics, 15(10), 2295–2314. https://doi.org/10.1080/21645515.2019.1658503
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Vuong, Q. V., Hirun, S., Roach, P. D., Bowyer, M. C., Phillips, P. A., & Scarlett, C. J. (2013). Effect of extraction conditions on total phenolic compounds and antioxidant activities of Carica papaya leaf aqueous extracts. Journal of Herbal Medicine, 3(3), 104–111. https://doi.org/10.1016/j.hermed.2013.04.004
  • World Health Organization. Dengue and severe dengue. https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue [Accessed 9 March 2023].
  • Yuan, S., Chan, H. S., & Hu, Z. (2017). Using PyMOL as a platform for computational drug design. Wiley Interdisciplinary Reviews, 7(2), e1298.
  • Zeidler, J. D., Fernandes-Siqueira, L. O., Barbosa, G. M., & Da Poian, A. T. (2017). Non-canonical roles of dengue virus non-structural proteins. Viruses, 9(3), 42. https://doi.org/10.3390/v9030042
  • Zhang, M. Q., & Wilkinson, B. (2007). Drug discovery beyond the 'rule-of-five. Current Opinion in Biotechnology, 18(6), 478–488. https://doi.org/10.1016/j.copbio.2007.10.005
  • Zunjar, V., Dash, R. P., Jivrajani, M., Trivedi, B., & Nivsarkar, M. (2016). Antithrombocytopenic activity of carpaine and alkaloidal extract of Carica papaya Linn. leaves in busulfan induced thrombocytopenic Wistar rats. Journal of Ethnopharmacology, 181, 20–25. https://doi.org/10.1016/j.jep.2016.01.035

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.