288
Views
1
CrossRef citations to date
0
Altmetric
Review Articles

Structure-activity relationship mediated molecular insights of DprE1 inhibitors: A Comprehensive Review

, , , , &
Pages 6472-6522 | Received 03 Apr 2023, Accepted 21 Jun 2023, Published online: 03 Jul 2023

References

  • Abrahams, K. A., & Besra, G. S. (2018). Mycobacterial cell wall biosynthesis: A multifaceted antibiotic target. Parasitology, 145(2), 116–133. https://doi.org/10.1017/S0031182016002377
  • Ahuja, S. D., Ashkin, D., Avendano, M., Banerjee, R., Bauer, M., Bayona, J. N., Becerra, M. C., Benedetti, A., Burgos, M., Centis, R., Chan, E. D., Chiang, C.-Y., Cox, H., D'Ambrosio, L., DeRiemer, K., Dung, N. H., Enarson, D., Falzon, D., Flanagan, K., … Yew, W. W. (2012). Multidrug resistant pulmonary tuberculosis treatment regimens and patient outcomes: An individual patient data meta-analysis of 9,153 patients. PLoS Medicine, 9(9). https://doi.org/10.1371/journal.pmed.1001300
  • Alderwick, L. J., Harrison, J., Lloyd, G. S., & Birch, H. L. (2015). The mycobacterial cell wall—Peptidoglycan and Arabinogalactan. Cold Spring Harbor Perspectives in Medicine, 5(8), a021113. https://doi.org/10.1101/CSHPERSPECT.A021113
  • Amado, P. S. M., Woodley, C., Cristiano, M. L. S., & O'Neill, P. M. (2022). Recent advances of DprE1 inhibitors against Mycobacterium tuberculosis: Computational analysis of physicochemical and ADMET properties. ACS Omega, 7(45), 40659–40681. https://doi.org/10.1021/ACSOMEGA.2C05307/SUPPL_FILE/AO2C05307_SI_001.XLSX
  • Balabon, O., Pitta, E., Rogacki, M. K., Meiler, E., Casanueva, R., Guijarro, L., Huss, S., Lopez-Roman, E. M., Santos-Villarejo, Á., Augustyns, K., Ballell, L., Aguirre, D. B., Bates, R. H., Cunningham, F., Cacho, M., & Van Der Veken, P. (2020). Optimization of hydantoins as potent antimycobacterial decaprenylphosphoryl-β-d-ribose oxidase (DprE1) inhibitors. Journal of Medicinal Chemistry, 63(10), 5367–5386. https://doi.org/10.1021/acs.jmedchem.0c00107
  • Bansal, R., Sharma, D., & Singh, R. (2017). Tuberculosis and its treatment: An overview. Mini-Reviews in Medicinal Chemistry, 18(1), 58-71. https://doi.org/10.2174/1389557516666160823160010
  • Batt, S. M., Cacho Izquierdo, M., Castro Pichel, J., Stubbs, C. J., Vela-Glez Del Peral, L., Pérez-Herrán, E., Dhar, N., Mouzon, B., Rees, M., Hutchinson, J. P., Young, R. J., McKinney, J. D., Barros Aguirre, D., Ballell, L., Besra, G. S., & Argyrou, A. (2015). Whole cell target engagement identifies novel inhibitors of Mycobacterium tuberculosis decaprenylphosphoryl-β- d -ribose oxidase. ACS Infectious Diseases, 1(12), 615–626. https://doi.org/10.1021/acsinfecdis.5b00065
  • Batt, S. M., Jabeen, T., Bhowruth, V., Quill, L., Lund, P. A., Eggeling, L., Alderwick, L. J., Fütterer, K., & Besra, G. S. (2012). Structural basis of inhibition of Mycobacterium tuberculosis DprE1 by benzothiazinone inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 109(28), 11354–11359. https://www.pnas.org/content/109/28/11354 https://doi.org/10.1073/pnas.1205735109
  • Bedaquiline, Pretomanid, and Linezolid (BPaL) | TB |CDC. (n.d). Retrieved May 15, 2023, from https://www.cdc.gov/tb/topic/drtb/bpal/default.htm
  • Bhutani, I., Loharch, S., Gupta, P., Madathil, R., & P, R. (2015). Structure, dynamics, and interaction of Mycobacterium tuberculosis (Mtb) DprE1 and DprE2 examined by molecular modeling, simulation, and electrostatic studies. PloS One, 10(3), e0119771. https://doi.org/10.1371/JOURNAL.PONE.0119771
  • Bonde, C., Gawad, J., & Bonde, S. (2022). Insights into development of Decaprenyl-phosphoryl-β-D-ribose 2′-epimerase (DprE1) inhibitors as antitubercular agents: A state of the art review. Indian Journal of Tuberculosis, 69(4), 404–420. https://doi.org/10.1016/j.ijtb.2021.09.003
  • Borthwick, J. A., Alemparte, C., Wall, I., Whitehurst, B. C., Argyrou, A., Burley, G., De Dios-Anton, P., Guijarro, L., Monteiro, M. C., Ortega, F., Suckling, C. J., Pichel, J. C., Cacho, M., & Young, R. J. (2020). Mycobacterium tuberculosis decaprenylphosphoryl-β- d -ribose oxidase inhibitors: Expeditious reconstruction of suboptimal hits into a series with potent in vivo activity. Journal of Medicinal Chemistry, 63(5), 2557–2576. https://doi.org/10.1021/ACS.JMEDCHEM.9B01561/SUPPL_FILE/JM9B01561_SI_001.CSV
  • Brecik, M.,Centárová, I.,Mukherjee, R.,Kolly, G. S.,Huszár, S.,Bobovská, A.,Kilacsková, E.,Mokošová, V.,Svetlíková, Z.,Šarkan, M.,Neres, J.,Korduláková, J.,Cole, S. T., &Mikušová, K. (2015). DprE1 Is a Vulnerable Tuberculosis Drug Target Due to Its Cell Wall Localization. ACS Chemical Biology, 10(7), 1631–1636. https://doi.org/10.1021/acschembio.5b0023725906160
  • Brennan, P., & Crick, D. (2007). The cell-wall core of Mycobacterium tuberculosis in the context of drug discovery. Current Topics in Medicinal Chemistry, 7(5), 475–488. https://doi.org/10.2174/156802607780059763
  • Bruchfeld, J., Correia-Neves, M., & Kallenius, G. (2015). Tuberculosis and HIV coinfection. Cold Spring Harbor Perspectives in Medicine, 5(7), a017871. https://doi.org/10.1101/CSHPERSPECT.A017871
  • BTZ-043 | Working Group for New TB Drugs. (n.d). Retrieved February 27, 2022, from https://www.newtbdrugs.org/pipeline/compound/btz-043
  • Buroni, S., Pasca, M. R., De Jesus Lopes Ribeiro, A. L., Degiacomi, G., Molteni, E., & Riccardi, G. (2012). Antituberculars which target decaprenylphosphoryl-β-Dribofuranose 2′-oxidase DprE1: State of art. Applied Microbiology and Biotechnology, 94(4), 907–916. https://doi.org/10.1007/s00253-012-4013-4
  • Caminero, J. A., García-Basteiro, A. L., & Rendon, A. (2019). Multidrug-resistant tuberculosis. The Lancet, 394(10195), 298. https://doi.org/10.1016/S0140-6736(19)30696-8
  • Campaniço, A., Moreira, R., & Lopes, F. (2018). Drug discovery in tuberculosis. New drug targets and antimycobacterial agents. European Journal of Medicinal Chemistry, 150, 525–545. https://doi.org/10.1016/J.EJMECH.2018.03.020
  • Campbell, I. A., & Bah-Sow, O. (2006). Pulmonary tuberculosis: Diagnosis and treatment. BMJ (Clinical Research ed.), 332(7551), 1194–1197. https://doi.org/10.1136/BMJ.332.7551.1194
  • Chatterji, M., Shandil, R., Manjunatha, M. R., Solapure, S., Ramachandran, V., Kumar, N., Saralaya, R., Panduga, V., Reddy, J., Prabhakar, K. R., Sharma, S., Sadler, C., Cooper, C. B., Mdluli, K., Iyer, P. S., Narayanan, S., & Shirude, P. S. (2014). 1,4-azaindole, a potential drug candidate for treatment of tuberculosis. Antimicrobial Agents and Chemotherapy, 58(9), 5325–5331. https://doi.org/10.1128/AAC.03233-14
  • Chhabra, S., Kumar, S., & Parkesh, R. (2021). Chemical space exploration of DprE1 inhibitors using chemoinformatics and artificial intelligence. ACS Omega, 6(22), 14430–14441. https://doi.org/10.1021/acsomega.1c01314
  • Chiaradia, L., Lefebvre, C., Parra, J., Marcoux, J., Burlet-Schiltz, O., Etienne, G., Tropis, M., & Daffé, M. (2017). Dissecting the mycobacterial cell envelope and defining the composition of the native mycomembrane. Scientific Reports, 7(1), 1–12. https://doi.org/10.1038/s41598-017-12718-4
  • Chikhale, R. V., Barmade, M. A., Murumkar, P. R., & Yadav, M. R. (2018). Overview of the Development of DprE1 Inhibitors for Combating the Menace of Tuberculosis. Journal of Medicinal Chemistry, 61(19), 8563–8593. https://doi.org/10.1021/ACS.JMEDCHEM.8B00281/ASSET/IMAGES/LARGE/JM-2018-00281W_0015.JPEG
  • Chikhale, R., Menghani, S., Babu, R., Bansode, R., Bhargavi, G., Karodia, N., Rajasekharan, M. V., Paradkar, A., & Khedekar, P. (2015). Development of selective DprE1 inhibitors: Design, synthesis, crystal structure and antitubercular activity of benzothiazolylpyrimidine-5-carboxamides. European Journal of Medicinal Chemistry, 96, 30–46. https://doi.org/10.1016/j.ejmech.2015.04.011
  • Christophe, T., Jackson, M., Jeon, H. K., Fenistein, D., Contreras-Dominguez, M., Kim, J., Genovesio, A., Carralot, J.-P., Ewann, F., Kim, E. H., Lee, S. Y., Kang, S., Seo, M. J., Park, E. J., Škovierová, H., Pham, H., Riccardi, G., Nam, J. Y., Marsollier, L., … Brodin, P. (2009). High content screening identifies decaprenyl-phosphoribose 2′ epimerase as a target for intracellular antimycobacterial inhibitors. PLoS Pathogens, 5(10), e1000645. https://doi.org/10.1371/journal.ppat.1000645
  • Cole, S. T., & Riccardi, G. (2011). New tuberculosis drugs on the horizon. Current Opinion in Microbiology, 14(5), 570–576. https://doi.org/10.1016/j.mib.2011.07.022
  • Degiacomi, G., Belardinelli, J. M., Pasca, M. R., Rossi, E. D., Riccardi, G., & Chiarelli, L. R. (2020). Promiscuous targets for antitubercular drug discovery: The paradigm of DprE1 and MmpL3. Applied Sciences, 10(2), 623. https://doi.org/10.3390/app10020623
  • Dhiman, R., &Singh, R. (2018). Recent advances for identification of new scaffolds and drug targets for Mycobacterium tuberculosis. IUBMB Life, 70(9), 905–916. https://doi.org/10.1002/iub.186329761628
  • Fan, D., Wang, B., Stelitano, G., Savková, K., Shi, R., Huszár, S., Han, Q., Mikušová, K., Chiarelli, L. R., Lu, Y., & Qiao, C. (2021). Structural and activity relationships of 6-sulfonyl-8-nitrobenzothiazinones as antitubercular agents. Journal of Medicinal Chemistry, 64(19), 14526–14539. https://doi.org/10.1021/ACS.JMEDCHEM.1C01049/SUPPL_FILE/JM1C01049_SI_002.CSV
  • Frieden, T. R., & Munsiff, S. S. (2005). The DOTS strategy for controlling the global tuberculosis epidemic. Clinics in Chest Medicine, 26(2), 197–205, v. https://doi.org/10.1016/J.CCM.2005.02.001
  • Gao, C., Ye, T. H., Wang, N. Y., Zeng, X. X., Zhang, L. D., Xiong, Y., You, X. Y., Xia, Y., Xu, Y., Peng, C. T., Zuo, W. Q., Wei, Y., & Yu, L. T. (2013). Synthesis and structure-activity relationships evaluation of benzothiazinone derivatives as potential anti-tubercular agents. Bioorganic & Medicinal Chemistry Letters, 23(17), 4919–4922. https://doi.org/10.1016/J.BMCL.2013.06.069
  • Global Tuberculosis Programme. (n.d). Retrieved November 25, 2021, from https://www.who.int/teams/global-tuberculosis-programme/the-end-tb-strategy
  • Global Tuberculosis Report 2021. (n.d). Retrieved November 10, 2021, from https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2021
  • Global Tuberculosis Report 2022. (n.d). Retrieved January 18, 2023, from https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2022
  • Gygli, S. M., Borrell, S., Trauner, A., & Gagneux, S. (2017). Antimicrobial resistance in Mycobacterium tuberculosis: Mechanistic and evolutionary perspectives. FEMS Microbiology Reviews, 41(3), 354–373. https://doi.org/10.1093/FEMSRE/FUX011
  • Hariguchi, N., Chen, X., Hayashi, Y., Kawano, Y., Fujiwara, M., Matsuba, M., Shimizu, H., Ohba, Y., Nakamura, I., Kitamoto, R., Shinohara, T., Uematsu, Y., Ishikawa, S., Itotani, M., Haraguchi, Y., Takemura, I., & Matsumoto, M. (2020). OPC-167832, a novel carbostyril derivative with potent antituberculosis activity as a DprE1 inhibitor. Antimicrobial Agents and Chemotherapy, 64(6), e02020-19. https://doi.org/10.1128/AAC.02020-19
  • Hu, X. P., Yang, L., Chai, X., Lei, Y. X., Alam, M. S., Liu, L., Shen, C., Jiang, D. J., Wang, Z., Liu, Z. Y., Xu, L., Wan, K. L., Zhang, T. Y., Yin, Y. L., Li, D., Cao, D. S., & Hou, T. J. (2022). Discovery of novel DprE1 inhibitors via computational bioactivity fingerprints and structure-based virtual screening. Acta Pharmacologica Sinica, 43(6), 1605–1615. https://doi.org/10.1038/s41401-021-00779-1
  • Imran, M., Alshrari, A. S., Thabet, H. K., Abida, & Bakht, M. A. (2021). Synthetic molecules as DprE1 inhibitors: A patent review.Expert Opinion on Therapeutic Patents, 31(8), 759–772. https://doi.org/10.1080/13543776.2021.1902990
  • Incandela, M. L., Perrin, E., Fondi, M., de Jesus Lopes Ribeiro, A. L., Mori, G., Moiana, A., Gramegna, M., Fani, R., Riccardi, G., & Pasca, M. R. (2013). DprE1, a new taxonomic marker in mycobacteria. FEMS Microbiology Letters, 348(1), 66–73. https://doi.org/10.1111/1574-6968.12246
  • Jadhavar, P., Vaja, M., Dhameliya, T., & Chakraborti, A. (2015). Oxazolidinones as anti-tubercular agents: Discovery, development and future perspectives. Current Medicinal Chemistry, 22(38), 4379–4397. https://doi.org/10.2174/0929867323666151106125759
  • Keam, S. J. (2019). Pretomanid: First approval. Drugs, 79(16), 1797–1803. https://doi.org/10.1007/S40265-019-01207-9
  • Kiazyk, S., & Ball, T. (2017). Tuberculosis (TB): Latent tuberculosis infection: An overview. Canada Communicable Disease Report = Releve Des Maladies Transmissibles au Canada, 43(3-4), 62–66. https://doi.org/10.14745/CCDR.V43I34A01
  • Kumar, A., Rajappan, R., Kini, S. G., Rathi, E., Dharmarajan, S., & Sreedhara Ranganath Pai, K. (2021). e-Pharmacophore model-guided design of potential DprE1 inhibitors: Synthesis, in vitro antitubercular assay and molecular modelling studies. Chemical Papers, 75(10), 5571–5585. https://doi.org/10.1007/s11696-021-01743-3
  • Kwan, C. K., & Ernst, J. D. (2011). HIV and tuberculosis: A deadly human syndemic. Clinical Microbiology Reviews, 24(2), 351–376. https://doi.org/10.1128/CMR.00042-10
  • Lamichhane, G. (2011). Novel targets in M. tuberculosis: Search for new drugs. Trends in Molecular Medicine, 17(1), 25–33. https://doi.org/10.1016/J.MOLMED.2010.10.004
  • Landge, S., Mullick, A. B., Nagalapur, K., Neres, J., Subbulakshmi, V., Murugan, K., Ghosh, A., Sadler, C., Fellows, M. D., Humnabadkar, V., Mahadevaswamy, J., Vachaspati, P., Sharma, S., Kaur, P., Mallya, M., Rudrapatna, S., Awasthy, D., Sambandamurthy, V. K., Pojer, F., … Ramachandran, V. (2015). Discovery of benzothiazoles as antimycobacterial agents: Synthesis, structure-activity relationships and binding studies with Mycobacterium tuberculosis decaprenylphosphoryl-β-d-ribose 2′-oxidase. Bioorganic & Medicinal Chemistry, 23(24), 7694–7710. https://doi.org/10.1016/j.bmc.2015.11.017
  • Li, P., Guo, K., Fu, L., Wang, B., Zhang, B., Gong, N., Lu, Y., Ma, C., Huang, H., Lu, Y., & Li, G. (2023). Solubility-driven optimization of benzothiopyranone salts leading to a preclinical candidate with improved pharmacokinetic properties and activity against Mycobacterium tuberculosis. European Journal of Medicinal Chemistry, 246, 114993. https://doi.org/10.1016/J.EJMECH.2022.114993
  • Liu, J., Dai, H., Wang, B., Liu, H., Tian, Z., & Zhang, Y. (2022). Exploring disordered loops in DprE1 provides a functional site to combat drug-resistance in Mycobacterium strains. European Journal of Medicinal Chemistry, 227, 113932. https://doi.org/10.1016/J.EJMECH.2021.113932
  • Liu, L., Kong, C., Fumagalli, M., Savková, K., Xu, Y., Huszár, S., Sammartino, J. C., Fan, D., Chiarelli, L. R., Mikušová, K., Sun, Z., & Qiao, C. (2020). Design, synthesis and evaluation of covalent inhibitors of DprE1 as antitubercular agents. European Journal of Medicinal Chemistry, 208, 112773. https://doi.org/10.1016/J.EJMECH.2020.112773
  • Liu, R., Lyu, X., Batt, S. M., Hsu, M.-H., Harbut, M. B., Vilchèze, C., Cheng, B., Ajayi, K., Yang, B., Yang, Y., Guo, H., Lin, C., Gan, F., Wang, C., Franzblau, S. G., Jacobs, W. R., Besra, G. S., Johnson, E. F., Petrassi, M., … Wang, F. (2017). Determinants of the inhibition of DprE1 and CYP2C9 by antitubercular thiophenes. Angewandte Chemie (International ed. in English), 56(42), 13011–13015. https://doi.org/10.1002/anie.201707324
  • Li, P., Wang, B., Zhang, X., Batt, S. M., Besra, G. S., Zhang, T., Ma, C., Zhang, D., Lin, Z., Li, G., Huang, H., & Lu, Y. (2018). Identification of novel benzothiopyranone compounds against Mycobacterium tuberculosis through scaffold morphing from benzothiazinones. European Journal of Medicinal Chemistry, 160, 157–170. https://doi.org/10.1016/J.EJMECH.2018.09.042
  • Lv, K., Tao, Z., Liu, Q., Yang, L., Wang, B., Wu, S., Wang, A., Huang, M., Liu, M., & Lu, Y. (2018). Design, synthesis and antitubercular evaluation of benzothiazinones containing a piperidine moiety. European Journal of Medicinal Chemistry, 151, 1–8. https://doi.org/10.1016/J.EJMECH.2018.03.060
  • Lv, K., You, X., Wang, B., Wei, Z., Chai, Y., Wang, B., Wang, A., Huang, G., Liu, M., & Lu, Y. (2017). Identification of better pharmacokinetic benzothiazinone derivatives as new antitubercular agents. ACS Medicinal Chemistry Letters, 8(6), 636–641. https://doi.org/10.1021/ACSMEDCHEMLETT.7B00106/SUPPL_FILE/ML7B00106_SI_001.PDF
  • Macozinone (MCZ, PBTZ-169). (n.d). | Working Group for New TB Drugs. Retrieved February 27, 2022, from https://www.newtbdrugs.org/pipeline/compound/macozinone-mcz-pbtz-169
  • Magnet, S., Hartkoorn, R. C., Székely, R., Pató, J., Triccas, J. A., Schneider, P., Szántai-Kis, C., Rfi, L., Chambon, M., Banfi, D., Bueno, M., Turcatti, G., Kéri, G., & Cole, S. T. (2010). Leads for antitubercular compounds from kinase inhibitor library screens. Tuberculosis (Edinburgh, Scotland), 90(6), 354–360. https://doi.org/10.1016/j.tube.2010.09.001
  • Mahajan, R. (2013). Bedaquiline: First FDA-approved tuberculosis drug in 40 years. International Journal of Applied and Basic Medical Research, 3(1), 1. https://doi.org/10.4103/2229-516X.112228
  • Maitra, A., Munshi, T., Healy, J., Martin, L. T., Vollmer, W., Keep, N. H., & Bhakta, S. (2019). Cell wall peptidoglycan in Mycobacterium tuberculosis: An Achilles’ heel for the TB-causing pathogen. FEMS Microbiology Reviews, 43(5), 548–575. https://doi.org/10.1093/FEMSRE/FUZ016
  • Makarov, V., Lechartier, B., Zhang, M., Neres, J., van der Sar, A. M., Raadsen, S. A., Hartkoorn, R. C., Ryabova, O. B., Vocat, A., Decosterd, L. A., Widmer, N., Buclin, T., Bitter, W., Andries, K., Pojer, F., Dyson, P. J., & Cole, S. T. (2014). Towards a new combination therapy for tuberculosis with next generation benzothiazinones. EMBO Molecular Medicine, 6(3), 372–383. https://doi.org/10.1002/EMMM.201303575
  • Makarov, V., Manina, G., Mikusova, K., Möllmann, U., Ryabova, O., Saint-Joanis, B., Dhar, N., Pasca, M. R., Buroni, S., Lucarelli, A. P., Milano, A., De Rossi, E., Belanova, M., Bobovska, A., Dianiskova, P., Kordulakova, J., Sala, C., Fullam, E., Schneider, P., … Cole, S. T. (2009). Benzothiazinones kill Mycobacterium tuberculosis by blocking arabinan synthesis. Science (New York, N.Y.), 324(5928), 801–804. https://doi.org/10.1126/SCIENCE.1171583
  • Makarov, V., Neres, J., Hartkoorn, R. C., Ryabova, O. B., Kazakova, E., Šarkan, M., Huszár, S., Piton, J., Kolly, G. S., Vocat, A., Conroy, T. M., Mikušová, K., & Cole, S. T. (2015). The 8-pyrrole-benzothiazinones are noncovalent inhibitors of DprE1 from Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 59(8), 4446–4452. https://doi.org/10.1128/AAC.00778-15
  • Manina, G. R., Pasca, M., Buroni, S., De Rossi, E., & Riccardi, G. (2010). Decaprenylphosphoryl-β-D-ribose 2’-epimerase from Mycobacterium tuberculosis is a magic drug target. Current Medicinal Chemistry, 17(27), 3099–3108. https://doi.org/10.2174/092986710791959693
  • Manjunatha, M. R., Shandil, R., Panda, M., Sadler, C., Ambady, A., Panduga, V., Kumar, N., Mahadevaswamy, J., Sreenivasaiah, M., Narayan, A., Guptha, S., Sharma, S., Sambandamurthy, V. K., Ramachandran, V., Mallya, M., Cooper, C., Mdluli, K., Butler, S., Tommasi, R., … Shirude, P. S. (2019). Scaffold morphing to identify novel DprE1 inhibitors with antimycobacterial activity. ACS Medicinal Chemistry Letters, 10(10), 1480–1485. https://doi.org/10.1021/acsmedchemlett.9b00343
  • Miku.sova, K., Makarov, V., & Neres, J. (2014). DprE1–from the discovery to the promising tuberculosis drug target. Current Pharmaceutical Design, 20(27), 4379–4403. https://doi.org/10.2174/138161282027140630122724
  • Mikušová, K., & Ekins, S. (2017). Learning from the past for TB drug discovery in the future. Drug Discovery Today, 22(3), 534–545. https://doi.org/10.1016/J.DRUDIS.2016.09.025
  • Naik, M., Humnabadkar, V., Tantry, S. J., Panda, M., Narayan, A., Guptha, S., Panduga, V., Manjrekar, P., Jena, L. K., Koushik, K., Shanbhag, G., Jatheendranath, S., Manjunatha, M. R., Gorai, G., Bathula, C., Rudrapatna, S., Achar, V., Sharma, S., Ambady, A., … Ghorpade, S. R. (2014). 4-Aminoquinolone piperidine amides: Noncovalent inhibitors of DprE1 with long residence time and potent antimycobacterial activity. Journal of Medicinal Chemistry, 57(12), 5419–5434. https://doi.org/10.1021/jm5005978
  • Neres, J., Hartkoorn, R. C., Chiarelli, L. R., Gadupudi, R., Pasca, M. R., Mori, G., Venturelli, A., Savina, S., Makarov, V., Kolly, G. S., Molteni, E., Binda, C., Dhar, N., Ferrari, S., Brodin, P., Delorme, V., Landry, V., de Jesus Lopes Ribeiro, A. L., Farina, D., … Cole, S. T. (2015). 2-carboxyquinoxalines kill Mycobacterium tuberculosis through noncovalent inhibition of DprE1. ACS Chemical Biology, 10(3), 705–714. https://doi.org/10.1021/cb5007163
  • Neres, J., Pojer, F., Molteni, E., Chiarelli, L. R., Dhar, N., Boy-Röttger, S., Buroni, S., Fullam, E., Degiacomi, G., Lucarelli, A. P., Read, R. J., Zanoni, G., Edmondson, D. E., De Rossi, E., Pasca, M. R., McKinney, J. D., Dyson, P. J., Riccardi, G., Mattevi, A., Cole, S. T., & Binda, C. (2012). Structural basis for benzothiazinone-mediated killing of Mycobacterium tuberculosis. Science Translational Medicine, 4(150), 150ra121. https://doi.org/10.1126/SCITRANSLMED.3004395
  • OPC-167832 | Working Group for New TB Drugs. (n.d). Retrieved February 27, 2022, from https://www.newtbdrugs.org/pipeline/compound/opc-167832
  • Panda, M., Ramachandran, S., Ramachandran, V., Shirude, P. S., Humnabadkar, V., Nagalapur, K., Sharma, S., Kaur, P., Guptha, S., Narayan, A., Mahadevaswamy, J., Ambady, A., Hegde, N., Rudrapatna, S. S., Hosagrahara, V. P., Sambandamurthy, V. K., & Raichurkar, A. (2014). Discovery of pyrazolopyridones as a novel class of noncovalent DprE1 inhibitor with potent anti-mycobacterial activity. Journal of Medicinal Chemistry, 57(11), 4761–4771. https://doi.org/10.1021/jm5002937
  • Peng, C. T., Gao, C., Wang, N. Y., You, X. Y., Zhang, L. D., Zhu, Y. X., Xv, Y., Zuo, W. Q., Ran, K., Deng, H. X., Lei, Q., Xiao, K. J., & Yu, L. T. (2015). Synthesis and antitubercular evaluation of 4-carbonyl piperazine substituted 1,3-benzothiazin-4-one derivatives. Bioorganic & Medicinal Chemistry Letters, 25(7), 1373–1376. https://doi.org/10.1016/j.bmcl.2015.02.061
  • Pipeline | Working Group for New TB Drugs. (n.d). Retrieved November 14, 2021, from https://www.newtbdrugs.org/pipeline/clinical
  • Piton, J., Foo, C. S. Y., & Cole, S. T. (2017). Structural studies of Mycobacterium tuberculosis DprE1 interacting with its inhibitors. Drug Discovery Today, 22(3), 526–533. https://doi.org/10.1016/J.DRUDIS.2016.09.014
  • Piton, J., Vocat, A., Lupien, A., Foo, C. S., Riabov, O., Makarov, V., & Cole, S. T. (2018). Structure-based drug design and characterization of sulfonyl-piperazine benzothiazinone inhibitors of DprE1 from Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 62(10), e00681-18.https://doi.org/10.1128/AAC.00681-18/SUPPL_FILE/ZAC010187478S1.PDF
  • Purohit, V., & Basu, A. K. (2000). Mutagenicity of nitroaromatic compounds. Chemical Research in Toxicology, 13(8), 673–692. https://doi.org/10.1021/TX000002X
  • Qin, R., Wang, P., Wang, B., Fu, L., Batt, S. M., Besra, G. S., Wu, C., Wang, Y., Huang, H., Lu, Y., & Li, G. (2022). Identification of thiophene-benzenesulfonamide derivatives for the treatment of multidrug-resistant tuberculosis. European Journal of Medicinal Chemistry, 231, 114145. https://doi.org/10.1016/J.EJMECH.2022.114145
  • Ramírez-Lapausa, M., Menéndez-Saldaña, A., & Noguerado-Asensio, A. (2015). [Extrapulmonary tuberculosis]. Revista Espanola de Sanidad Penitenciaria, 17(1), 3–11. https://doi.org/10.4321/S1575-06202015000100002
  • Riccardi, G., Pasca, M. R., Chiarelli, L. R., Manina, G., Mattevi, A., & Binda, C. (2013). The DprE1 enzyme, one of the most vulnerable targets of Mycobacterium tuberculosis. Applied Microbiology and Biotechnology, 97(20), 8841–8848. https://doi.org/10.1007/S00253-013-5218-X
  • Richter, A., Narula, G., Rudolph, I., Seidel, R. W., Wagner, C., Av-Gay, Y., & Imming, P. (2022). Efficient synthesis of benzothiazinone analogues with activity against intracellular Mycobacterium tuberculosis. ChemMedChem, 17(6), e202100733. https://doi.org/10.1002/CMDC.202100733
  • Richter, A., Seidel, R. W., Goddard, R., Eckhardt, T., Lehmann, C., Dörner, J., Siersleben, F., Sondermann, T., Mann, L., Patzer, M., Jäger, C., Reiling, N., & Imming, P. (2022). BTZ-derived benzisothiazolinones with in vitro activity against Mycobacterium tuberculosis. ACS Medicinal Chemistry Letters, 13(8), 1302–1310. https://doi.org/10.1021/ACSMEDCHEMLETT.2C00215/SUPPL_FILE/ML2C00215_SI_011.XYZ
  • Sahoo, S. K., Ahmad, M. N., Kaul, G., Nanduri, S., Dasgupta, A., Chopra, S., & Yaddanapudi, V. M. (2022). Synthesis and evaluation of triazole congeners of nitro-benzothiazinones potentially active against drug resistant Mycobacterium tuberculosis demonstrating bactericidal efficacy. RSC Medicinal Chemistry, 13(5), 585–593. https://doi.org/10.1039/D1MD00387A
  • Sahoo, S. K., Gajula, S. N. R., Ahmad, M. N., Kaul, G., Nanduri, S., Sonti, R., Dasgupta, A., Chopra, S., & Yaddanapudi, V. M. (2022). Bioevaluation of quinoline-4-carbonyl derivatives of piperazinyl-benzothiazinones as promising antimycobacterial agents. Archiv Der Pharmazie, 355(11), 2200168. https://doi.org/10.1002/ardp.202200168
  • Sammartino, J. C., Morici, M., Stelitano, G., Degiacomi, G., Riccardi, G., & Chiarelli, L. R. (2022). Functional investigation of the antitubercular drug target Decaprenylphosphoryl-β-D-ribofuranose-2-epimerase DprE1/DprE2 complex. Biochemical and Biophysical Research Communications, 607, 49–53. https://doi.org/10.1016/J.BBRC.2022.03.091
  • Seung, K. J., Keshavjee, S., & Rich, M. L. (n.d). Multidrug-resistant tuberculosis and extensively drug-resistant tuberculosis. https://doi.org/10.1101/cshperspect.a017863
  • Shaku, M., Ealand, C., & Kana, B. D. (2020). Cell surface biosynthesis and remodeling pathways in mycobacteria reveal new drug targets. Frontiers in Cellular and Infection Microbiology, 10, 603382. https://doi.org/10.3389/FCIMB.2020.603382/BIBTEX
  • Shetye, G. S., Franzblau, S. G., & Cho, S. (2020). New tuberculosis drug targets, their inhibitors, and potential therapeutic impact. Translational Research: The Journal of Laboratory and Clinical Medicine, 220, 68–97. https://doi.org/10.1016/J.TRSL.2020.03.007
  • Shi, R., Wang, B., Stelitano, G., Wu, X., Shan, Y., Wu, Y., Wang, X., Chiarelli, L. R., Lu, Y., & Qiao, C. (2022). Development of 6-methanesulfonyl-8-nitrobenzothiazinone Based Antitubercular Agents. ACS Medicinal Chemistry Letters, 13(4), 593–598. https://doi.org/10.1021/ACSMEDCHEMLETT.1C00652/SUPPL_FILE/ML1C00652_SI_002.PDF
  • Shirude, P. S., Shandil, R. K., Manjunatha, M. R., Sadler, C., Panda, M., Panduga, V., Reddy, J., Saralaya, R., Nanduri, R., Ambady, A., Ravishankar, S., Sambandamurthy, V. K., Humnabadkar, V., Jena, L. K., Suresh, R. S., Srivastava, A., Prabhakar, K. R., Whiteaker, J., McLaughlin, R. E., … Chatterji, M. (2014). Lead optimization of 1,4-azaindoles as antimycobacterial agents. Journal of Medicinal Chemistry, 57(13), 5728–5737. https://doi.org/10.1021/jm500571f
  • Shirude, P. S., Shandil, R., Sadler, C., Naik, M., Hosagrahara, V., Hameed, S., Shinde, V., Bathula, C., Humnabadkar, V., Kumar, N., Reddy, J., Panduga, V., Sharma, S., Ambady, A., Hegde, N., Whiteaker, J., McLaughlin, R. E., Gardner, H., Madhavapeddi, P., … Chatterji, M. (2013). Azaindoles: Noncovalent DprE1 inhibitors from scaffold morphing efforts, kill Mycobacterium tuberculosis and are efficacious in vivo. Journal of Medicinal Chemistry, 56(23), 9701–9708. https://doi.org/10.1021/JM401382V
  • Sotgiu, G., Centis, R., D'ambrosio, L., & Migliori, G. B. (2015). Tuberculosis treatment and drug regimens. Cold Spring Harbor Perspectives in Medicine, 5(5), a017822. https://doi.org/10.1101/CSHPERSPECT.A017822
  • Stephanie, F., Saragih, M., & Tambunan, U. S. F. (2021). Recent progress and challenges for drug-resistant tuberculosis treatment. Pharmaceutics, 13(5), 592. https://doi.org/10.3390/pharmaceutics13050592
  • TBA-7371 | Working Group for New TB Drugs. (n.d). Retrieved February 27, 2022, from https://www.newtbdrugs.org/pipeline/compound/tba-7371
  • Tiwari, R., Miller, P. A., Chiarelli, L. R., Mori, G., Šarkan, M., Centárová, I., Cho, S., Mikušová, K., Franzblau, S. G., Oliver, A. G., & Miller, M. J. (2016). Design, syntheses, and anti-TB activity of 1,3-benzothiazinone azide and click chemistry products inspired by BTZ043. ACS Medicinal Chemistry Letters, 7(3), 266–270. https://doi.org/10.1021/acsmedchemlett.5b00424
  • Tiwari, R., Miller, P. A., Cho, S., Franzblau, S. G., & Miller, M. J. (2015). Syntheses and antituberculosis activity of 1,3-benzothiazinone sulfoxide and sulfone derived from BTZ043. ACS Medicinal Chemistry Letters, 6(2), 128–133. https://doi.org/10.1021/ML5003458
  • Tornheim, J. A., & Dooley, K. E. (2019). The global landscape of tuberculosis therapeutics. Annual Review of Medicine, 70, 105–120. https://doi.org/10.1146/annurev-med-040717-051150
  • Trefzer, C., Škovierová, H., Buroni, S., Bobovská, A., Nenci, S., Molteni, E., Pojer, F., Pasca, M. R., Makarov, V., Cole, S. T., Riccardi, G., Mikušová, K., & Johnsson, K. (2012). Benzothiazinones are suicide inhibitors of mycobacterial decaprenylphosphoryl-β-D-ribofuranose 2’-oxidase DprE1. Journal of the American Chemical Society, 134(2), 912–915. https://doi.org/10.1021/JA211042R
  • Umare, M. D., Khedekar, P. B., & Chikhale, R. V. (2021). Mycobacterial membrane protein large 3 (MmpL3) inhibitors: A promising approach to combat tuberculosis. ChemMedChem. 16(20), 3136–3148. https://doi.org/10.1002/CMDC.202100359
  • Valencia, J., Rubio, V., Puerto, G., Vasquez, L., Bernal, A., Mora, J. R., Cuesta, S. A., Paz, J. L., Insuasty, B., Abonia, R., Quiroga, J., Insuasty, A., Coneo, A., Vidal, O., Márquez, E., & Insuasty, D. (2022). QSAR studies, molecular docking, molecular dynamics, synthesis, and biological evaluation of novel quinolinone-based thiosemicarbazones against Mycobacterium tuberculosis. Antibiotics, 12(1), 61. https://doi.org/10.3390/antibiotics12010061
  • Velayati, A. A., Farnia, P., & Masjedi, M. R. (2013). The totally drug resistant tuberculosis (TDR-TB). International Journal of Clinical and Experimental Medicine, 6(4), 307. /pmc/articles/PMC3631557/
  • Wang, P., Batt, S. M., Wang, B., Fu, L., Qin, R., Lu, Y., Li, G., Besra, G. S., & Huang, H. (2021). Discovery of novel thiophene-arylamide derivatives as DprE1 inhibitors with potent antimycobacterial activities. Journal of Medicinal Chemistry, 64(9), 6241–6261. https://doi.org/10.1021/acs.jmedchem.1c00263
  • Wang, A. A., Lu, Y., Lv, K., Ma, C., Xu, S., Wang, B., Wang, A. A., Xia, G., & Liu, M. (2020). Design, synthesis and antimycobacterial activity of new benzothiazinones inspired by rifampicin/rifapentine. Bioorganic Chemistry, 102, 104135. https://doi.org/10.1016/J.BIOORG.2020.104135
  • Wang, H., Lv, K., Li, X., Wang, B. B., Wang, A., Tao, Z., Geng, Y., Wang, B. B., Huang, M., Liu, M., Guo, H., & Lu, Y. (2019). Design, synthesis and antimycobacterial activity of novel nitrobenzamide derivatives. Chinese Chemical Letters, 30(2), 413–416. https://doi.org/10.1016/j.cclet.2018.08.005
  • Wang, A., Lv, K., Tao, Z., Gu, J., Fu, L., Liu, M., Wan, B., Franzblau, S. G., Ma, C., Ma, X., Han, B., Wang, A., Xu, S., & Lu, Y. (2019). Identification of benzothiazinones containing an oxime functional moiety as new anti-tuberculosis agents. European Journal of Medicinal Chemistry, 181, 111595. https://doi.org/10.1016/J.EJMECH.2019.111595
  • Wang, A., Ma, C., Chai, Y., Liu, X., Lv, K., Fu, L., Wang, B., Jia, X., Liu, M., & Lu, Y. (2020). Identification of benzothiazinones containing 2-benzyl-2,7-diazaspiro[3.5]nonane moieties as new antitubercular agents. European Journal of Medicinal Chemistry, 200, 112409. https://doi.org/10.1016/J.EJMECH.2020.112409
  • Wang, F., Sambandan, D., Halder, R., Wang, J., Batt, S. M., Weinrick, B., Ahmad, I., Yang, P., Zhang, Y., Kim, J., Hassani, M., Huszar, S., Trefzer, C., Ma, Z., Kaneko, T., Mdluli, K. E., Franzblau, S., Chatterjee, A. K., Johnsson, K., … Schultz, P. G. (2013). Identification of a small molecule with activity against drug-resistant and persistent tuberculosis. Proceedings of the National Academy of Sciences, 110(27), E2510-E2517. https://doi.org/10.1073/pnas.1309171110
  • Wang, A. A., Xu, S., Chai, Y., Xia, G., Wang, B., Lv, K., Ma, C., Wang, D., Wang, A. A., Qin, X., Liu, M., & Lu, Y. (2021). Design, synthesis and biological activity of N-(amino)piperazine-containing benzothiazinones against Mycobacterium tuberculosis. European Journal of Medicinal Chemistry, 218, 113398. https://doi.org/10.1016/J.EJMECH.2021.113398
  • Whitehurst, B. C., Young, R. J., Burley, G. A., Cacho, M., Torres, P., & Vela-Gonzalez del Peral, L. (2020). Identification of 2-((2,3-dihydrobenzo[b][1,4]dioxin-6-yl)amino)-N-phenylpropanamides as a novel class of potent DprE1 inhibitors). Bioorganic & Medicinal Chemistry Letters, 30(12), 127192. https://pubmed.ncbi.nlm.nih.gov/32312582/ https://doi.org/10.1016/j.bmcl.2020.127192
  • Xavier, A. S., & Lakshmanan, M. (2014). Delamanid: A new armor in combating drug-resistant tuberculosis. Journal of Pharmacology & Pharmacotherapeutics, 5(3), 222–224. https://doi.org/10.4103/0976-500X.136121
  • Xiong, L., Gao, C., Shi, Y. J., Tao, X., Rong, J., Liu, K. L., Peng, C. T., Wang, N. Y., Lei, Q., Zhang, Y. W., Yu, L. T., & Wei, Y. Q. (2018). Identification of a new series of benzothiazinone derivatives with excellent antitubercular activity and improved pharmacokinetic profiles. RSC Advances, 8(20), 11163–11176. https://doi.org/10.1039/C8RA00720A
  • Yadav, S., Soni, A., Tanwar, O., Bhadane, R., Besra, G. S., & Kawathekar, N. (2023). The DprE1 inhibitors: Enduring aspirations for future anti-TB drug discovery. ChemMedChem, e202300099,1-32.https://doi.org/10.1002/cmdc.202300099
  • Yalcin-Ozkat, G., Ersan, R. H., Ulger, M., Ulger, S. T., Burmaoglu, S., Yildiz, I., & Algul, O. (2023). Design, synthesis, and computational studies of benzimidazole derivatives as new antitubercular agents. Journal of Biomolecular Structure and Dynamics, 41(7), 2667–2686. https://doi.org/10.1080/07391102.2022.2036241
  • Yang, H., & Lu, S. (2020). COVID-19 and tuberculosis. Journal of Translational Internal Medicine, 8(2), 59–65. https://doi.org/10.2478/JTIM-2020-0010
  • Zhanel, G. G., Love, R., Adam, H., Golden, A., Zelenitsky, S., Schweizer, F., Gorityala, B., Lagacé-Wiens, P. R. S., Rubinstein, E., Walkty, A., Gin, A. S., Gilmour, M., Hoban, D. J., Lynch, J. P., & Karlowsky, J. A. (2015). Tedizolid: A novel oxazolidinone with potent activity against multidrug-resistant gram-positive pathogens. Drugs, 75(3), 253–270. https://doi.org/10.1007/S40265-015-0352-7
  • Zhang, G., Howe, M., & Aldrich, C. C. (2019). Spirocyclic and bicyclic 8-nitrobenzothiazinones for tuberculosis with improved physicochemical and pharmacokinetic properties. ACS Medicinal Chemistry Letters, 10(3), 348–351. https://doi.org/10.1021/ACSMEDCHEMLETT.8B00634/ASSET/IMAGES/MEDIUM/ML-2018-00634C_0006.GIF
  • Zhang, R., Lv, K., Wang, B., Li, L., Wang, B., Liu, M., Guo, H., Wang, A., & Lu, Y. (2017). Design, synthesis and antitubercular evaluation of benzothiazinones containing an oximido or amino nitrogen heterocycle moiety. RSC Advances, 7(3), 1480–1483. https://doi.org/10.1039/C6RA25712G
  • Zhang, G., Sheng, L., Hegde, P., Li, Y., & Aldrich, C. C. (2021). 8-cyanobenzothiazinone analogs with potent antitubercular activity. Medicinal Chemistry Research: An International Journal for Rapid Communications on Design and Mechanisms of Action of Biologically Active Agents, 30(2), 449–458. https://doi.org/10.1007/S00044-020-02676-4
  • Zumla, A., Chakaya, J., Centis, R., D'Ambrosio, L., Mwaba, P., Bates, M., Kapata, N., Nyirenda, T., Chanda, D., Mfinanga, S., Hoelscher, M., Maeurer, M., & Migliori, G. B. (2015). Tuberculosis treatment and management-an update on treatment regimens, trials, new drugs, and adjunct therapies. The Lancet. Respiratory Medicine, 3(3), 220–234. https://doi.org/10.1016/S2213-2600(15)00063-6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.