193
Views
11
CrossRef citations to date
0
Altmetric
Research Articles

An in-silico investigation based on molecular simulations of novel and potential brain-penetrant GluN2B NMDA receptor antagonists as anti-stroke therapeutic agents

ORCID Icon, , , , , , , & show all
Pages 6174-6188 | Received 29 Mar 2023, Accepted 27 Jun 2023, Published online: 10 Jul 2023

References

  • Abdalla, M., & Rabie, A. M. (2023). Dual computational and biological assessment of some promising nucleoside analogs against the COVID-19-Omicron variant. Computational Biology and Chemistry, 104, 107768. https://doi.org/10.1016/j.compbiolchem.2022.107768
  • Alameen, A. A., Abdalla, M., Alshibl, H. M., AlOthman, M. R., Alkhulaifi, M. M., Mirgany, T. O., & Elsayim, R. (2022). In-silico studies of glutathione peroxidase4 activators as candidate for multiple sclerosis management. Journal of Saudi Chemical Society, 26(6), 101554. https://doi.org/10.1016/j.jscs.2022.101554
  • Alhumaydhi, F. A., Aljasir, M. A., Aljohani, A. S. M., Alsagaby, S. A., Alwashmi, A. S. S., Shahwan, M., Hassan, M. I., Islam, A., & Shamsi, A. (2021). Probing the interaction of memantine, an important Alzheimer’s drug, with human serum albumin: In silico and in vitro approach. Journal of Molecular Liquids, 340, 116888. https://doi.org/10.1016/j.molliq.2021.116888
  • AutoDock 4.2.6/AutoDockTools 1.5.6 – Suite of Automated Docking Tools – My Biosoftware – Bioinformatics Softwares Blog. (n.d). Retrieved November 19, 2022, from https://mybiosoftware.com/autodock-4-2-3-autodocktools-1-5-6-suite-automated-docking-tools.html
  • Bank, R. P. D. (n.d.). RCSB PDB – 3QEL: Crystal structure of amino terminal domains of the NMDA receptor subunit GluN1 and GluN2B in complex with ifenprodil. Retrieved June 13, 2023, from https://www.rcsb.org/structure/3QEL
  • Barthels, D., & Das, H. (2020). Current advances in ischemic stroke research and therapies. Biochimica et Biophysica Acta. Molecular Basis of Disease, 1866(4), 165260. https://doi.org/10.1016/j.bbadis.2018.09.012
  • Bassani, D., Pavan, M., Bolcato, G., Sturlese, M., & Moro, S. (2022). Re-exploring the ability of common docking programs to correctly reproduce the binding modes of non-covalent inhibitors of SARS-CoV-2 protease Mpro. Pharmaceuticals, 15(2), 180. https://doi.org/10.3390/ph15020180
  • BIOVIA Discovery Studio 2021 Client. Get the software safely and easily. (n.d.). Software Informer. Retrieved November 19, 2022, from https://biovia-discovery-studio-2021-client.software.informer.com/
  • Buemi, M. R., De Luca, L., Ferro, S., Russo, E., De Sarro, G., & Gitto, R. (2016). Structure-guided design of new indoles as negative allosteric modulators (NAMs) of N-methyl-d-aspartate receptor (NMDAR) containing GluN2B subunit. Bioorganic & Medicinal Chemistry, 24(7), 1513–1519. https://doi.org/10.1016/j.bmc.2016.02.021
  • Crismon, M. L. (1994). Tacrine: First drug approved for Alzheimer’s Disease. The Annals of Pharmacotherapy, 28(6), 744–751. https://doi.org/10.1177/106002809402800612
  • Daina, A., Michielin, O., & Zoete, V. (2014). iLOGP: A simple, robust, and efficient description of n -Octanol/water partition coefficient for drug design using the GB/SA approach. Journal of Chemical Information and Modeling, 54(12), 3284–3301. https://doi.org/10.1021/ci500467k
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717. https://doi.org/10.1038/srep42717
  • Daina, A., & Zoete, V. (2016). A BOILED-Egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem. 11(11), 1117–1121. https://doi.org/10.1002/cmdc.201600182
  • Drug Discovery | Schrödinger. (n.d.). Retrieved November 19, 2022, from https://www.schrodinger.com/platform/drug-discovery
  • Egan, W. J., & Lauri, G. (2002). Prediction of intestinal permeability. Advanced Drug Delivery Reviews, 54(3), 273–289. https://doi.org/10.1016/S0169-409X(02)00004-2
  • Egan, W. J., Merz, K. M., & Baldwin, J. J. (2000). Prediction of drug absorption using multivariate statistics. Journal of Medicinal Chemistry, 43(21), 3867–3877. https://doi.org/10.1021/jm000292e
  • El Fadili, M.,Er-Rajy, M.,Ali Eltayb, W.,Kara, M.,Assouguem, A.,Saleh, A.,Al Kamaly, O.,Zerougui, S., &Elhallaoui, M. (2023). In-silico Screening Based on Molecular Simulations of 3,4-disubstituted Pyrrolidine Sulfonamides as Selective and Competitive GlyT1 Inhibitors. Arabian Journal of Chemistry, 105105. https://doi.org/10.1016/j.arabjc.2023.105105
  • El Fadili, M., Er-Rajy, M., Imtara, H., Kara, M., Zarougui, S., Altwaijry, N., Al Kamaly, O., Al Sfouk, A., & Elhallaoui, M. (2022). 3D-QSAR, ADME-Tox in silico prediction and molecular docking studies for modeling the analgesic activity against neuropathic pain of novel NR2B-selective NMDA receptor antagonists. Processes, 10(8), 1462. https://doi.org/10.3390/pr10081462
  • El Fadili, M., Er-Rajy, M., Imtara, H., Noman, O. M., Mothana, R. A., Abdullah, S., Zerougui, S., & Elhallaoui, M. (2023). QSAR, ADME-Tox, molecular docking and molecular dynamics simulations of novel selective glycine transporter type 1 inhibitors with memory enhancing properties. Heliyon, 9(2), e13706. https://doi.org/10.1016/j.heliyon.2023.e13706
  • El Fadili, M., Er-Rajy, M., Kara, M., Assouguem, A., Belhassan, A., Alotaibi, A., Mrabti, N. N., FIDan, H., Ullah, R., Ercisli, S., Zarougui, S., & Elhallaoui, M. (2022). QSAR, ADMET in silico pharmacokinetics, molecular docking and molecular dynamics studies of novel bicyclo (Aryl Methyl) Benzamides as potent GlyT1 inhibitors for the treatment of schizophrenia. Pharmaceuticals, 15(6), 670. https://doi.org/10.3390/ph15060670
  • Eltayb, W. A., Abdalla, M., & Rabie, A. M. (2023). Novel investigational anti-SARS-CoV-2 agent Ensitrelvir “S-217622”: A very promising potential universal broad-spectrum antiviral at the therapeutic frontline of coronavirus species. ACS Omega, 8(6), 5234–5246. https://doi.org/10.1021/acsomega.2c03881
  • Er-Rajy, M., El Fadili, M., Hadni, H., Mrabti, N. N., Zarougui, S., & Elhallaoui, M. (2022). 2D-QSAR modeling, drug-likeness studies, ADMET prediction, and molecular docking for anti-lung cancer activity of 3-substituted-5-(phenylamino) indolone derivatives. Structural Chemistry, 33(3), 973–986. https://doi.org/10.1007/s11224-022-01913-3
  • Er-Rajy, M., El Fadili, M., Imtara, H., Saeed, A., Ur Rehman, A., Zarougui, S., Abdullah, S. A., Alahdab, A., Parvez, M. K., & Elhallaoui, M. (2023). 3D-QSAR Studies, molecular docking, molecular dynamic simulation, and ADMET proprieties of novel pteridinone derivatives as PLK1 inhibitors for the treatment of prostate cancer. Life, 13(1), 127. https://doi.org/10.3390/life13010127
  • Er-Rajy, M., El Fadili, M., Mujwar, S., Zarougui, S., & Elhallaoui, M. (2023). Design of novel anti-cancer drugs targeting TRKs inhibitors based 3D QSAR, molecular docking and molecular dynamics simulation. Journal of Biomolecular Structure and Dynamics, 0(0), 1–14. https://doi.org/10.1080/07391102.2023.2170471
  • Er-Rajy, M., El Fadili, M., Mrabti, N. N., Zarougui, S., & Elhallaoui, M. (2022). QSAR, molecular docking, ADMET properties in silico studies for a series of 7-propanamide benzoxaboroles as potent anti-cancer agents. Chinese Journal of Analytical Chemistry, 50(12), 100163. https://doi.org/10.1016/j.cjac.2022.100163
  • Er-Rajy, M., Fadili, M. E., Mujwar, S., Lenda, F. Z., Zarougui, S., & Elhallaoui, M. (2023). QSAR, molecular docking, and molecular dynamics simulation–based design of novel anti-cancer drugs targeting thioredoxin reductase enzyme. Structural Chemistry. https://doi.org/10.1007/s11224-022-02111-x
  • Faisal, S., Badshah, S. L., Kubra, B., Sharaf, M., Emwas, A.-H., Jaremko, M., & Abdalla, M. (2022). Identification and inhibition of the druggable allosteric site of SARS-CoV-2 NSP10/NSP16 methyltransferase through computational approaches. Molecules, 27(16), 5241. https://doi.org/10.3390/molecules27165241
  • Hollingsworth, S. A., & Dror, R. O. (2018). Molecular dynamics simulation for all. Neuron, 99(6), 1129–1143. https://doi.org/10.1016/j.neuron.2018.08.011
  • Hu, X., Zeng, Z., Zhang, J., Wu, D., Li, H., & Geng, F. (2023). Molecular dynamics simulation of the interaction of food proteins with small molecules. Food Chemistry, 405(Pt A), 134824. https://doi.org/10.1016/j.foodchem.2022.134824
  • Kaminski, G. A., Friesner, R. A., Tirado-Rives, J., & Jorgensen, W. L. (2001). Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. The Journal of Physical Chemistry B, 105(28), 6474–6487. https://doi.org/10.1021/jp003919d
  • Kandsi, F., Elbouzidi, A., Lafdil, F. Z., Meskali, N., Azghar, A., Addi, M., Hano, C., Maleb, A., & Gseyra, N. (2022). Antibacterial and antioxidant activity of Dysphania ambrosioides (L.) Mosyakin and clemants essential oils: Experimental and computational approaches. Antibiotics, 11(4), 482. https://doi.org/10.3390/antibiotics11040482
  • Karakas, E., Simorowski, N., & Furukawa, H. (2011). Subunit arrangement and phenylethanolamine binding in GluN1/GluN2B NMDA receptors. Nature, 475(7355), 249–253. https://doi.org/10.1038/nature10180
  • Katan, M., & Luft, A. (2018). Global burden of stroke. Seminars in Neurology, 38(2), 208–211. https://doi.org/10.1055/s-0038-1649503
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (1997). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 23(1–3), 3–25. https://doi.org/10.1016/S0169-409X(96)00423-1
  • Liu, Z., Qiu, X., Mak, S., Guo, B., Hu, S., Wang, J., Luo, F., Xu, D., Sun, Y., Zhang, G., Cui, G., Wang, Y., Zhang, Z., & Han, Y. (2020). Multifunctional memantine nitrate significantly protects against glutamate-induced excitotoxicity via inhibiting calcium influx and attenuating PI3K/Akt/GSK3beta pathway. Chemico-Biological Interactions, 325, 109020. https://doi.org/10.1016/j.cbi.2020.109020
  • Martin, Y. C. (2005). A bioavailability score. Journal of Medicinal Chemistry, 48(9), 3164–3170. https://doi.org/10.1021/jm0492002
  • Muegge, I. (2003). Selection criteria for drug-like compounds. Medicinal Research Reviews, 23(3), 302–321. https://doi.org/10.1002/med.10041
  • Norgan, A. P., Coffman, P. K., Kocher, J.-P A., Katzmann, D. J., & Sosa, C. P. (2011). Multilevel parallelization of AutoDock 4.2. Journal of Cheminformatics, 3(1), 12. https://doi.org/10.1186/1758-2946-3-12
  • Ononamadu, C. J., Abdalla, M., Ihegboro, G. O., Li, J., Owolarafe, T. A., John, T. D., & Tian, Q. (2021). In silico identification and study of potential anti-mosquito juvenile hormone binding protein (MJHBP) compounds as candidates for dengue virus—Vector insecticides. Biochemistry and Biophysics Reports, 28, 101178. https://doi.org/10.1016/j.bbrep.2021.101178
  • PkCSM. (n.d). Retrieved November 19, 2022, from https://biosig.lab.uq.edu.au/pkcsm/prediction
  • Radan, M., Djikic, T., Obradovic, D., & Nikolic, K. (2022). Application of in vitro PAMPA technique and in silico computational methods for blood-brain barrier permeability prediction of novel CNS drug candidates. European Journal of Pharmaceutical Sciences, 168, 106056. https://doi.org/10.1016/j.ejps.2021.106056
  • Reeves, M. J., Bushnell, C. D., Howard, G., Gargano, J. W., Duncan, P. W., Lynch, G., Khatiwoda, A., & Lisabeth, L. (2008). Sex differences in stroke: Epidemiology, clinical presentation, medical care, and outcomes. The Lancet, 7(10), 915–926. https://doi.org/10.1016/S1474-4422(08)70193-5
  • Ritchie, T. J., Ertl, P., & Lewis, R. (2011). The graphical representation of ADME-related molecule properties for medicinal chemists. Drug Discovery Today, 16(1–2), 65–72. https://doi.org/10.1016/j.drudis.2010.11.002
  • Sonkusare, S. K., Kaul, C. L., & Ramarao, P. (2005). Dementia of Alzheimer’s disease and other neurodegenerative disorders – Memantine, a new hope. Pharmacological Research, 51(1), 1–17. https://doi.org/10.1016/j.phrs.2004.05.005
  • Temme, L., Frehland, B., Schepmann, D., Robaa, D., Sippl, W., & Wünsch, B. (2018). Hydroxymethyl bioisosteres of phenolic GluN2B-selective NMDA receptor antagonists: Design, synthesis and pharmacological evaluation. European Journal of Medicinal Chemistry, 144, 672–681. https://doi.org/10.1016/j.ejmech.2017.12.054
  • Thakral, S., Yadav, A., Singh, V., Kumar, M., Kumar, P., Narang, R., Sudhakar, K., Verma, A., Khalilullah, H., Jaremko, M., & Emwas, A.-H. (2023). Alzheimer’s disease: Molecular aspects and treatment opportunities using herbal drugs. Ageing Research Reviews, 88, 101960. https://doi.org/10.1016/j.arr.2023.101960
  • Veber, D. F., Johnson, S. R., Cheng, H.-Y., Smith, B. R., Ward, K. W., & Kopple, K. D. (2002). Molecular properties that influence the oral bioavailability of drug candidates. Journal of Medicinal Chemistry, 45(12), 2615–2623. https://doi.org/10.1021/jm020017n
  • Xu, Q., Hu, M., Li, J., Ma, X., Chu, Z., Zhu, Q., Zhang, Y., Zhu, P., Huang, Y., & He, G. (2022). Discovery of novel brain-penetrant GluN2B NMDAR antagonists via pharmacophore-merging strategy as anti-stroke therapeutic agents. European Journal of Medicinal Chemistry, 227, 113876. https://doi.org/10.1016/j.ejmech.2021.113876
  • Yalcin, S. (2020). Molecular docking, drug likeness, and ADMET analyses of Passiflora compounds as P-Glycoprotein (P-gp) inhibitor for the treatment of cancer. Current Pharmacology Reports, 6(6), 429–440. https://doi.org/10.1007/s40495-020-00241-6
  • Zothantluanga, J. H., Abdalla, M., Rudrapal, M., Tian, Q., Chetia, D., & Li, J. (2023). Computational investigations for identification of bioactive molecules from Baccaurea ramiflora and Bergenia ciliata as Inhibitors of SARS-CoV-2 M pro. Polycyclic Aromatic Compounds, 43(3), 2459–2487. https://doi.org/10.1080/10406638.2022.2046613

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.