180
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Role of a substrate binding pocket in the amino terminal domain of Mycobacterium tuberculosis caseinolytic protease B (ClpB) in its function

, , , &
Pages 6189-6199 | Received 28 Dec 2022, Accepted 27 Jun 2023, Published online: 07 Jul 2023

References

  • Acebron, S. P., Martin, I., Castillo, U., Moro, F., & Muga, A. (2009). DnaK-mediated association of ClpB to protein aggregates. A bichaperone network at the aggregate surface. FEBS Letters, 583(18), 2991–2996. https://doi.org/10.1016/j.febslet.2009.08.020
  • Aguado, A., Fernandez-Higuero, J. A., Moro, F., & Muga, A. (2015). Chaperone-assisted protein aggregate reactivation: Different solutions for the same problem. Archives of Biochemistry and Biophysics, 580, 121–134. https://doi.org/10.1016/j.abb.2015.07.006
  • Akoev, V., Gogol, E. P., Barnett, M. E., & Zolkiewski, M. (2004). Nucleotide‐induced switch in oligomerization of the AAA + ATPase ClpB. Protein Science, 13(3), 567–574. https://doi.org/10.1110/ps.03422604
  • Baker, T. A., & Sauer, R. T. (2006). ATP-dependent proteases of bacteria: Recognition logic and operating principles. Trends in Biochemical Sciences, 31(12), 647–653. https://doi.org/10.1016/j.tibs.2006.10.006
  • Bhattacharya, A., Tejero, R., & Montelione, G. T. (2007). Evaluating protein structures determined by structural genomics consortia. Proteins: Structure, Function, and Bioinformatics, 66(4), 778–795. https://doi.org/10.1002/prot.21165
  • Bryksin, A. V., & Matsumura, I. (2010). Overlap extension PCR cloning: A simple and reliable way to create recombinant plasmids. BioTechniques, 48(6), 463–465. https://doi.org/10.2144/000113418
  • Bukau, B., Weissman, J., & Horwich, A. (2006). Molecular chaperones and protein quality control. Cell, 125(3), 443–451. https://doi.org/10.1016/j.cell.2006.04.014
  • Carroni, M., Kummer, E., Oguchi, Y., Wendler, P., Clare, D. K., Sinning, I., Kopp, J., Mogk, A., Bukau, B., & Saibil, H. R. (2014). Head-to-tail interactions of the coiled-coil domains regulate ClpB activity and cooperation with Hsp70 in protein disaggregation. eLife, 3, e02481. https://doi.org/10.7554/eLife.02481
  • de Vries, S., van Dijk, M., & Bonvin, A. (2010). The HADDOCK web server for data-driven biomolecular docking. Nature Protocols, 5(5), 883–897. https://doi.org/10.1038/nprot.2010.32
  • Deville, C. L., Carroni, M., Franke, K. B., Topf, M., Bukau, B., Mogk, A., & Saibil, H. R. (2017). Structural pathway of regulated substrate transfer and threading through an Hsp100 disaggregase. Science Advances, 3(8), e1701726. https://doi.org/10.1126/sciadv.1701726
  • Dougan, D. A., Mogk, A., & Bukau, B. (2002). Protein folding and degradation in bacteria: To degrade or not to degrade? That is the question. Cellular and Molecular Life Sciences, 59(10), 1607–1616. https://doi.org/10.1007/pl00012487
  • Dougan, D. A., Mogk, A., Zeth, K., Turgay, K., & Bukau, B. (2002). AAA + proteins and substrate recognition, it all depends on their partner in crime. FEBS Letters, 529(1), 6–10. https://doi.org/10.1016/s0014-5793(02)03179-4
  • Doyle, S. M., Shastry, S., Kravats, A. N., Shih, Y.-H., Miot, M., Hoskins, J. R., Stan, G., & Wickner, S. (2015). Interplay between E. coli DnaK, ClpB and GrpE during protein disaggregation. Journal of Molecular Biology, 427(2), 312–327. https://doi.org/10.1016/j.jmb.2014.10.013
  • Emsley, P., Lohkamp, B., Scott, W. G., & Cowtan, K. (2010). Features and development of Coot. Acta Crystallographica. Section D, Biological Crystallography, 66(Pt 4), 486–501. https://doi.org/10.1107/S0907444910007493
  • Eriksson, M. J., & Clarke, A. K. (1996). The heat shock protein ClpB mediates the development of thermotolerance in the cyanobacterium Synechococcus sp. strain PCC 7942. Journal of Bacteriology, 178(16), 4839–4846. https://doi.org/10.1128/jb.178.16.4839-4846.1996
  • Gottesman, M. E., & Hendrickson, W. A. (2000). Protein folding and unfolding by Escherichia coli chaperones and chaperonins. Current Opinion in Microbiology, 3(2), 197–202. https://doi.org/10.1016/s1369-5274(00)00075-8
  • Hanson, P. I., & Whiteheart, S. W. (2005). AAA + proteins: Have engine, will work. Nature Reviews. Molecular Cell Biology, 6(7), 519–529. https://doi.org/10.1038/nrm1684
  • Henderson, B., Allan, E., & Coates, A. R. (2006). Stress wars: The direct role of host and bacterial molecular chaperones in bacterial infection. Infection and Immunity, 74(7), 3693–3706. https://doi.org/10.1128/IAI.01882-05
  • Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., … Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583–589. https://doi.org/10.1038/s41586-021-03819-2
  • Kedzierska, S., Akoev, V., Barnett, M. E., & Zolkiewski, M. (2003). Structure and function of the middle domain of ClpB from Escherichia coli. Biochemistry, 42(48), 14242–14248. https://doi.org/10.1021/bi035573d
  • Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N., & Sternberg, M. J. E. (2015). The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protocols, 10(6), 845–858. https://doi.org/10.1038/nprot.2015.053
  • Lee, S., Sowa, M. E., Watanabe, Y. H., Sigler, P. B., Chiu, W., Yoshida, M., & Tsai, F. T. (2003). The structure of ClpB: A molecular chaperone that rescues proteins from an aggregated state. Cell, 115(2), 229–240. https://doi.org/10.1016/s0092-8674(03)00807-9
  • Lee, U., Rioflorido, I., Hong, S. W., Larkindale, J., Waters, E. R., & Vierling, E. (2007). The Arabidopsis ClpB/Hsp100 family of proteins: Chaperones for stress and chloroplast development. The Plant Journal, 49(1), 115–127. https://doi.org/10.1111/j.1365-313X.2006.02940.x
  • Li, S., & Wilkinson, M. F. (1997). Site‐directed mutagenesis: A two‐step method using PCR and DpnI. BioTechniques, 23(4), 588–590. https://doi.org/10.2144/97234bm05
  • Neuwald, A. F., Aravind, L., Spouge, J. L., & Koonin, E. V. (1999). AAA+: A class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Research, 9(1), 27–43. https://doi.org/10.1101/gr.9.1.27
  • Parijat, P., & Batra, J. K. (2015). Role of DnaK in HspR HAIR interaction of Mycobacterium tuberculosis. IUBMB Life, 67(11), 816–827. https://doi.org/10.1002/iub.1438
  • Pronk, S., Páll, S., Schulz, R., Larsson, P., Bjelkmar, P., Apostolov, R., Shirts, M. R., Smith, J. C., Kasson, P. M., van der Spoel, D., Hess, B., & Lindahl, E. (2013). GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics, 29(7), 845–854. https://doi.org/10.1093/bioinformatics/btt055
  • Ranaweera, C. B., Glaza, P., Yang, T., & Zolkiewski, M. (2018). Interaction of substrate-mimicking peptides with the AAA + ATPase ClpB from Escherichia coli. Archives of Biochemistry and Biophysics, 655, 12–17. https://doi.org/10.1016/j.abb.2018.08.002
  • Rath, P., Singh, P. K., & Batra, J. K. (2012). Functional and structural characterization of Helicobacter pylori ClpX: A molecular chaperone of Hsp100 family. Protein and Peptide Letters, 19(12), 1263–1271. https://doi.org/10.2174/092986612803521701
  • Rizo, A. N., Lin, J., Gates, S. N., Tse, E., Bart, S. M., Castellano, L. M., DiMaio, F., Shorter, J., & Southworth, D. R. (2019). Structural basis for substrate gripping and translocation by the ClpB AAA + disaggregase. Nature Communications, 10(1), 2393. https://doi.org/10.1038/s41467-019-10150-y
  • Rosenzweig, R., Farber, P., Velyvis, A., Rennella, E., Latham, M. P., & Kay, L. E. (2015). ClpB N-terminal domain plays a regulatory role in protein disaggregation. Proceedings of the National Academy of Sciences of the United States of America, 112(50), 6872–6881. https://doi.org/10.1073/pnas.1512783112
  • Roy, A., Kucukural, A., & Zhang, Y. (2010). I-TASSER: A unified platform for automated protein structure and function prediction. Nature Protocols, 5(4), 725–738. https://doi.org/10.1038/nprot.2010.5
  • Rule, C. S., Patrick, M., & Sandkvist, M. (2016). Measuring in vitro ATPase activity for enzymatic characterization. Journal of Visualized Experiments, 114, 3791–54305.
  • Schlee, S., Groemping, Y., Herde, P., Seidel, R., & Reinstein, J. (2001). The chaperone function of ClpB from Thermus thermophilus depends on allosteric interactions of its two ATP-binding sites. Journal of Molecular Biology, 306(4), 889–899. https://doi.org/10.1006/jmbi.2001.4455
  • Tripathi, P., Parijat, P., Patel, V. K., & Batra, J. K. (2018). The amino-terminal domain of ClpB protein of M. tuberculosis plays a crucial role in its substrate disaggregation activity. FEBS Open Bio, 8(10), 1669–1690. https://doi.org/10.1002/2211-5463.12509
  • Tripathi, P., Singh, L. K., Kumari, S., Hakiem, O. R., & Batra, J. K. (2020). ClpB is an essential stress regulator of Mycobacterium tuberculosis and endows survival advantage to dormant bacilli. International Journal of Medical Microbiology, 310(3), 151402. https://doi.org/10.1016/j.ijmm.2020.151402
  • Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., de Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Research, 46(W1), W296–W303. https://doi.org/10.1093/nar/gky427
  • Weibezahn, J., Schlieker, C., Bukau, B., & Mogk, A. (2003). Characterization of a trap mutant of the AAA + chaperone ClpB. The Journal of Biological Chemistry, 278(35), 32608–32617. https://doi.org/10.1074/jbc.M303653200
  • Weibezahn, J., Tessarz, P., Schlieker, C., Zahn, R., Maglica, Z., Lee, S., Zentgraf, H., Weber-Ban, E. U., Dougan, D. A., Tsai, F. T. F., Mogk, A., & Bukau, B. (2004). Thermotolerance requires refolding of aggregated proteins by substrate translocation through the central pore of ClpB. Cell, 119(5), 653–665. https://doi.org/10.1016/j.cell.2004.11.027
  • Yin, Y., Feng, X., Yu, H., Fay, A., Kovach, A., Glickman, M. S., & Li, H. (2021). Structural basis for aggregate dissolution and refolding by the Mycobacterium tuberculosis ClpB-DnaK bi-chaperone system. Cell Reports, 35(8), 109166. https://doi.org/10.1016/j.celrep.2021.109166
  • Yu, H., Lupoli, T. J., Kovach, A., Meng, X., Zhao, G., Nathan, C. F., & Li, H. (2018). ATP hydrolysis-coupled peptide translocation mechanism of Mycobacterium tuberculosis ClpB. Proceedings of the National Academy of Sciences, 115(41), 9560–9569. https://doi.org/10.1073/pnas.1810648115
  • Zolkiewski, M., Chesnokova, L. S., & Witt, S. N. (2016). Reactivation of aggregated proteins by the ClpB/DnaK bi-chaperone system. Current Protocols in Protein Science, 83, 28101–281018.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.