124
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

In silico identification of 20S proteasome-β5 subunit inhibitors using structure-based virtual screening

, , , &
Pages 6165-6173 | Received 16 Oct 2021, Accepted 26 Jun 2023, Published online: 04 Jul 2023

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Agamah, F. E., Mazandu, G. K., Hassan, R., Bope, C. D., Thomford, N. E., Ghansah, A., & Chimusa, E. R. (2019). Computational/in silico methods in drug target and lead prediction. Briefings in Bioinformatics, 21(5), 1663–1675. https://doi.org/10.1093/bib/bbz103
  • AutoDock Vina—Molecular Docking and Virtual Screening Program (n.d.). Retrieved April 29, 2020, from http://vina.scripps.edu/
  • Bai, Q., Tan, S., Xu, T., Liu, H., Huang, J., & Yao, X. (2021). MolAICal: A soft tool for 3D drug design of protein targets by artificial intelligence and classical algorithm. Briefings in Bioinformatics, 22(3), bbaa161. https://doi.org/10.1093/bib/bbaa161
  • Bank, R. P. D. (n.d.) RCSB PDB: Homepage. Retrieved April 29, 2020, from https://www.rcsb.org/
  • Chen, D., Frezza, M., Schmitt, S., Kanwar, J., & Dou, Q. P. (2011). Bortezomib as the first proteasome inhibitor anticancer drug: Current status and future perspectives. Current Cancer Drug Targets, 11(3), 239–253. https://doi.org/10.2174/156800911794519752
  • Chen, X., Dou, Q. P., Liu, J., & Tang, D. (2021). Targeting ubiquitin–Proteasome system with copper complexes for cancer therapy. Frontiers in Molecular Biosciences, 8, 649151. https://doi.org/10.3389/fmolb.2021.649151
  • Crawford, L. J., Walker, B., & Irvine, A. E. (2011). Proteasome inhibitors in cancer therapy. Journal of Cell Communication and Signaling, 5(2), 101–110. https://doi.org/10.1007/s12079-011-0121-7
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717. https://doi.org/10.1038/srep42717
  • Daina, A., Michielin, O., & Zoete, V. (2019). SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Research, 47(W1), W357–W364. https://doi.org/10.1093/nar/gkz382
  • Di Giovanni, C., Ettari, R., Sarno, S., Rotondo, A., Bitto, A., Squadrito, F., Altavilla, D., Schirmeister, T., Novellino, E., Grasso, S., Zappalà, M., & Lavecchia, A. (2016). Identification of noncovalent proteasome inhibitors with high selectivity for chymotrypsin-like activity by a multistep structure-based virtual screening. European Journal of Medicinal Chemistry, 121, 578–591. https://doi.org/10.1016/j.ejmech.2016.05.049
  • El Yaagoubi, O. M., Lahmadi, A., Bouyahya, A., Filali, H., Samaki, H., El Antri, S., & Aboudkhil, S. (2021). Antitumor effect of Inula viscosa extracts on DMBA-induced skin carcinoma are mediated by proteasome inhibition. BioMed Research International, 2021, e6687589. https://doi.org/10.1155/2021/6687589
  • El Yaagoubi, O. M., Oularbi, L., Bouyahya, A., Samaki, H., El Antri, S., & Aboudkhil, S. (2021). The role of the ubiquitin-proteasome pathway in skin cancer development: 26S proteasome-activated NF-κB signal transduction. Cancer Biology & Therapy, 22(10–12), 479–492. https://doi.org/10.1080/15384047.2021.1978785
  • Filali, H., El Yaagoubi, O. M., Lahmadi, A., Quessar, A., Antri, S. E., Samaki, H., & Aboudkhil, S. (2022). Functional and quantitative evaluation of the 20S proteasome in serum and intracellular in145 moroccan patients with hematologic malignancies. Clinical Proteomics, 19(1), 1. https://doi.org/10.1186/s12014-022-09375-9
  • Goodwin, R. J. A., Bunch, J., & McGinnity, D. F. (2017). Chapter six—Mass spectrometry imaging in oncology drug discovery. In R. R. Drake & L. A. McDonnell (Eds.), Advances in cancer research (Vol. 134, pp. 133–171). Academic Press. https://doi.org/10.1016/bs.acr.2016.11.005
  • Han, J.-J., Yang, X., Wang, Q., Tang, L., Yu, F., Huang, X., Wang, Y., Liu, J.-X., & Xie, Q. (2019). The β5 subunit is essential for intact 26S proteasome assembly to specifically promote plant autotrophic growth under salt stress. New Phytologist, 221(3), 1359–1368. https://doi.org/10.1111/nph.15471
  • Hsu, K.-C., Chen, Y.-F., Lin, S.-R., & Yang, J.-M. (2011). iGEMDOCK: A graphical environment of enhancing GEMDOCK using pharmacological interactions and post-screening analysis. BMC Bioinformatics, 12(1), S33. https://doi.org/10.1186/1471-2105-12-S1-S33
  • IGEMDOCK (n.d.). Retrieved May 11, 2020, from http://gemdock.life.nctu.edu.tw/dock/igemdock.php
  • Ito, S. (2020). Proteasome inhibitors for the treatment of multiple myeloma. Cancers, 12(2), 265. https://doi.org/10.3390/cancers12020265
  • Khan, M. L., & Stewart, A. K. (2011). Carfilzomib: A novel second-generation proteasome inhibitor. Future Oncology, 7(5), 607–612. https://doi.org/10.2217/fon.11.42
  • Lipinski, C. A. (2004). Lead- and drug-like compounds: The rule-of-five revolution. Drug Discovery Today. Technologies, 1(4), 337–341. https://doi.org/10.1016/j.ddtec.2004.11.007
  • Machado, D., Girardini, M., Viveiros, M., & Pieroni, M. (2018). Challenging the drug-likeness dogma for new drug discovery in tuberculosis. Frontiers in Microbiology, 9, 1367. https://doi.org/10.3389/fmicb.2018.01367
  • O’Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., & Hutchison, G. R. (2011). Open Babel: An open chemical toolbox. Journal of Cheminformatics, 3, 33. https://doi.org/10.1186/1758-2946-3-33
  • Olsson, M. A., Söderhjelm, P., & Ryde, U. (2016). Converging ligand-binding free energies obtained with free-energy perturbations at the quantum mechanical level. Journal of Computational Chemistry, 37(17), 1589–1600. https://doi.org/10.1002/jcc.24375
  • Park, J., Cho, J., & Song, E. J. (2020). Ubiquitin–proteasome system (UPS) as a target for anticancer treatment. Archives of Pharmacal Research, 43(11), 1144–1161. https://doi.org/10.1007/s12272-020-01281-8
  • Park, J. E., Miller, Z., Jun, Y., Lee, W., & Kim, K. B. (2018). Next-generation proteasome inhibitors for cancer therapy. Translational Research: The Journal of Laboratory and Clinical Medicine, 198, 1–16. https://doi.org/10.1016/j.trsl.2018.03.002
  • Pawar, A., Basler, M., Goebel, H., Alvarez Salinas, G. O., Groettrup, M., & Böttcher, T. (2020). Competitive metabolite profiling of natural products reveals subunit specific inhibitors of the 20S proteasome. ACS Central Science, 6(2), 241–246. https://doi.org/10.1021/acscentsci.9b01170
  • PreADMET | Prediction of ADME/Tox (n.d.). PreADMET | Prediction of ADME/Tox. Retrieved May 24, 2021, from https://preadmet.bmdrc.kr/
  • PyMOL | Pymol.Org (n.d.). Retrieved May 12, 2020, from https://pymol.org/2/
  • Rausch, J. L., Ali, A. A., Lee, D. M., Gebreyohannes, Y. K., Mehalek, K. R., Agha, A., Patil, S. S., Tolstov, Y., Wellens, J., Dhillon, H. S., Makielski, K. R., Debiec-Rychter, M., Schöffski, P., Wozniak, A., & Duensing, A. (2020). Differential antitumor activity of compounds targeting the ubiquitin-proteasome machinery in gastrointestinal stromal tumor (GIST) cells. Scientific Reports, 10(1), 5178. https://doi.org/10.1038/s41598-020-62088-7
  • Saavedra-García, P., Martini, F., & Auner, H. W. (2020). Proteasome inhibition in multiple myeloma: Lessons for other cancers. American Journal of Physiology. Cell Physiology, 318(3), C451–C462. https://doi.org/10.1152/ajpcell.00286.2019
  • Schüttelkopf, A. W., & van Aalten, D. M. F. (2004). PRODRG: A tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallographica. Section D, Biological Crystallography, 60(Pt 8), 1355–1363. https://doi.org/10.1107/S0907444904011679
  • Sherman, D. J., & Li, J. (2020). Proteasome inhibitors: Harnessing proteostasis to combat disease. Molecules, 25(3), 671. https://doi.org/10.3390/molecules25030671
  • Sliwoski, G., Kothiwale, S., Meiler, J., & Lowe, E. W. (2014). Computational methods in drug discovery. Pharmacological Reviews, 66(1), 334–395. https://doi.org/10.1124/pr.112.007336
  • Tan, C. R. C., Abdul-Majeed, S., Cael, B., & Barta, S. K. (2019). Clinical pharmacokinetics and pharmacodynamics of bortezomib. Clinical Pharmacokinetics, 58(2), 157–168. https://doi.org/10.1007/s40262-018-0679-9
  • Téléchargements—MGLTools (n.d.). Retrieved April 29, 2020, from http://mgltools.scripps.edu/downloads
  • Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. C. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718. https://doi.org/10.1002/jcc.20291
  • Viana Nunes, A. M., das Chagas Pereira de Andrade, F., Filgueiras, L. A., de Carvalho Maia, O. A., Cunha, R. L. O. R., Rodezno, S. V. A., Maia Filho, A. L. M., de Amorim Carvalho, F. A., Braz, D. C., & Mendes, A. N. (2020). preADMET analysis and clinical aspects of dogs treated with the Organotellurium compound RF07: A possible control for canine visceral leishmaniasis? Environmental Toxicology and Pharmacology, 80, 103470. https://doi.org/10.1016/j.etap.2020.103470
  • Wahiba, E., Marc, P. W., Anass, K., Haya, A., Jalal, N., Soumaya, B., & Sayeh, E. (2021). Immuno-informatics-based identification of novel potential B cell and T cell epitopes to fight Zika virus infections. Infectious Disorders-Drug Targets, 21(4), 572–581.
  • Wei, X., Zeng, W., Xie, K., Diao, P., & Tang, P. (2018). Potential use of chymotrypsin-like proteasomal activity as a biomarker for prostate cancer. Oncology Letters, 15(4), 5149–5154. https://doi.org/10.3892/ol.2018.7936
  • Yun, Y., Lee, S.-Y., Choi, W. H., Park, J.-C., Lee, D. H., Kim, Y. K., Lee, J. H., Lee, J.-Y., Lee, M. J., & Kim, Y. H. (2020). Proteasome activity in the plasma as a novel biomarker in mild cognitive impairment with chronic tinnitus. Journal of Alzheimer’s Disease, 78(1), 195–205. https://doi.org/10.3233/JAD-200728
  • Zhang, J., Ye, Z., Chen, W., Culpepper, J., Jiang, H., Ball, L. E., Mehrotra, S., Blumental-Perry, A., Tew, K. D., & Townsend, D. M. (2020). Altered redox regulation and S-glutathionylation of BiP contribute to bortezomib resistance in multiple myeloma. Free Radical Biology & Medicine, 160, 755–767. https://doi.org/10.1016/j.freeradbiomed.2020.09.013

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.