167
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

In silico analysis of the interaction of de novo peptides derived from Salvia hispanica with anticancer targets

Evaluation of the anticancer potential of de novo peptides derived from Salvia hispanica through molecular docking

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 6119-6135 | Received 21 Nov 2022, Accepted 25 Jun 2023, Published online: 15 Jul 2023

References

  • Ahmad, A., Sayed, A., Ginnebaugh, K. R., Sharma, V., Suri, A., Saraph, A., Padhye, S., & Sarkar, F. H. (2015). Molecular docking and inhibition of matrix metalloproteinase-2 by novel difluorinatedbenzylidene curcumin analog. American Journal of Translational Research, 7(2), 298–308.
  • Aier, I., Varadwaj, P. K., & Raj, U. (2016). Structural insights into conformational stability of both wild-type and mutant EZH2 receptor. Scientific Reports, 6(1), 34984. https://doi.org/10.1038/srep34984
  • Altieri, D. C. (2015). Survivin – The inconvenient IAP. Seminars in Cell & Developmental Biology, 39, 91–96. https://doi.org/10.1016/j.semcdb.2014.12.007
  • Arslan, A. E., Arslan, O., & Kandemir, S. Y. (2021). AHP–TOPSIS hybrid decision-making analysis: Simav integrated system case study. Journal of Thermal Analysis and Calorimetry, 145(3), 1191–1202. https://doi.org/10.1007/s10973-020-10270-4
  • Avendaño López, C., & Menendez, J. C. (2015). Drugs that inhibit signaling pathways for tumor cell growth and proliferation. In Medicinal chemistry of anticancer drugs (2nd ed., pp. 391–491). Elsevier Science. https://doi.org/10.1016/B978-0-444-62649-3.00010-7
  • Bakare, O. O., Fadaka, A. O., Keyster, M., & Pretorius, A. (2020). Structural and molecular docking analytical studies of the predicted ligand binding sites of cadherin-1 in cancer prognostics. Advances and Applications in Bioinformatics and Chemistry, 13, 1–9. https://doi.org/10.2147/AABC.S253851
  • Bhandari, D., Rafiq, S., Gat, Y., Gat, P., Waghmare, R., & Kumar, V. (2020). A review on bioactive peptides: physiological functions, bioavailability and safety. International Journal of Peptide Research and Therapeutics, 26(1), 139–150. https://doi.org/10.1007/s10989-019-09823-5
  • Boice, A. G., Lopez, K. E., Pandita, R. K., Parsons, M. J., Charendoff, C. I., Charaka, V., Carisey, A. F., Pandita, T. K., & Bouchier-Hayes, L. (2022). Caspase-2 regulates S-phase cell cycle events to protect from DNA damage accumulation independent of apoptosis. Oncogene, 41(2), 204–219. https://doi.org/10.1038/s41388-021-02085-w
  • Boysen, M., Kityk, R., & Mayer, M. P. (2019). Hsp70- and Hsp90-mediated regulation of the conformation of p53 DNA binding domain and p53 cancer variants. Molecular Cell, 74(4), 831–843.e4. https://doi.org/10.1016/j.molcel.2019.03.032
  • Bruner, H. C., & Derksen, P. W. B. (2018). Loss of E-cadherin-dependent cell–cell adhesion and the development and progression of cancer. Cold Spring Harbor Perspectives in Biology, 10(3), a029330. https://doi.org/10.1101/cshperspect.a029330
  • Chai, J., Liu, J. N. K., & Ngai, E. W. T. (2013). Application of decision-making techniques in supplier selection: A systematic review of literature. Expert Systems with Applications, 40(10), 3872–3885. https://doi.org/10.1016/j.eswa.2012.12.040
  • Chiangjong, W., Chutipongtanate, S., & Hongeng, S. (2020). Anticancer peptide: Physicochemical property, functional aspect and trend in clinical application. International Journal of Oncology, 57(3), 678–696. https://doi.org/10.3892/ijo.2020.5099
  • Colomer, C., Pecharroman, I., Bigas, A., & Espinosa, L. (2020). Targeting IKKα kinase to prevent tumor progression and therapy resistance. Cancer Drug Resistance, 3(3), 482–490. https://doi.org/10.20517/cdr.2019.104
  • da Cunha Santos, G., Shepherd, F. A., & Tsao, M. S. (2011). EGFR mutations and lung cancer. Annual Review of Pathology, 6, 49–69. https://doi.org/10.1146/annurev-pathol-011110-130206
  • Das, A. (2017). Advances in Chia seed research. Advances in Biotechnology & Microbiology, 5(2), 555661. https://doi.org/10.19080/AIBM.2017.05.555662
  • Dehghani Soufi, M., Ghobadian, B., Najafi, G., Sabzimaleki, M. R., & Yusaf, T. (2015). TOPSIS multi-criteria decision modeling approach for biolubricant selection for two-stroke petrol engines. Energies, 8(12), 13960–13970. https://doi.org/10.3390/en81212408
  • Dimitrov, I., Flower, D. R., & Doytchinova, I. (2013). AllerTOP – A server for in silico prediction of allergens. BMC Bioinformatics, 14(S6), S4. https://doi.org/10.1186/1471-2105-14-S6-S4
  • Du, Z., & Lovly, C. M. (2018). Mechanisms of receptor tyrosine kinase activation in cancer. Molecular Cancer, 17(1), 58. https://doi.org/10.1186/s12943-018-0782-4
  • Duffy, M. J., O'Donovan, N., Brennan, D. J., Gallagher, W. M., & Ryan, B. M. (2007). Survivin: A promising tumor biomarker. Cancer Letters, 249(1), 49–60. https://doi.org/10.1016/j.canlet.2006.12.020
  • Felício, M. R., Silva, O. N., Gonçalves, S., Santos, N. C., & Franco, O. L. (2017). Peptides with Dual Antimicrobial and Anticancer Activities. Frontiers in Chemistry, 5, 5. https://doi.org/10.3389/fchem.2017.00005
  • Ferreira, L. G., Dos Santos, R. N., Oliva, G., & Andricopulo, A. D. (2015). Molecular docking and structure-based drug design strategies. Molecules, 20(7), 13384–13421. https://doi.org/10.3390/molecules200713384
  • Fink, D., Schlagbauer-Wadl, H., Selzer, E., Lucas, T., Wolff, K., Pehamberger, H., Eichler, H.-G., & Jansen, B. (2001). Elevated procaspase levels in human melanoma. Melanoma Research, 11(4), 385–393. https://doi.org/10.1097/00008390-200108000-00009
  • Gaspar, D., Veiga, A. S., & Castanho, M. A. R. B. (2013). From antimicrobial to anticancer peptides. A review. Frontiers in Microbiology, 4, 294. https://doi.org/10.3389/fmicb.2013.00294
  • Gil-Kulik, P., Krzyżanowski, A., Dudzińska, E., Karwat, J., Chomik, P., Świstowska, M., Kondracka, A., Kwaśniewska, A., Cioch, M., Jojczuk, M., Nogalski, A., & Kocki, J. (2019). Potential involvement of BIRC5 in maintaining pluripotency and cell differentiation of human stem cells. Oxidative Medicine and Cellular Longevity, 2019, e8727925. https://doi.org/10.1155/2019/8727925
  • Gupta, U. K., Mahanta, S., & Paul, S. (2013). In silico design of small peptide-based Hsp90 inhibitor: A novel anticancer agent. Medical Hypotheses, 81(5), 853–861. https://doi.org/10.1016/j.mehy.2013.08.006
  • Henderson, V., Smith, B., Burton, L. J., Randle, D., Morris, M., & Odero-Marah, V. A. (2015). Snail promotes cell migration through PI3K/AKT-dependent Rac1 activation as well as PI3K/AKT-independent pathways during prostate cancer progression. Cell Adhesion & Migration, 9(4), 255–264. https://doi.org/10.1080/19336918.2015.1013383
  • Hill, M. M., & Hemmings, B. A. (2002). Inhibition of protein kinase B/Akt: Implications for cancer therapy. Pharmacology & Therapeutics, 93(2–3), 243–251. https://doi.org/10.1016/S0163-7258(02)00193-6
  • Hollingsworth, S. A., & Dror, R. O. (2018). Molecular dynamics simulation for all. Neuron, 99(6), 1129–1143. https://doi.org/10.1016/j.neuron.2018.08.011
  • Hoskin, D. W., & Ramamoorthy, A. (2008). Studies on anticancer activities of antimicrobial peptides. Biochimica et Biophysica Acta, 1778(2), 357–375. https://doi.org/10.1016/j.bbamem.2007.11.008
  • Huang, W.-Q., Lin, Q., Zhuang, X., Cai, L.-L., Ruan, R.-S., Lu, Z.-X., & Tzeng, C.-M. (2014). Structure, function, and pathogenesis of SHP2 in developmental disorders and tumorigenesis. Current Cancer Drug Targets, 14(6), 567–588. https://doi.org/10.2174/1568009614666140717105001
  • Huang, Y., Wang, X., Wang, H., Liu, Y., & Chen, Y. (2011). Studies on mechanism of action of anticancer peptides by modulation of hydrophobicity within a defined structural framework. Molecular Cancer Therapeutics, 10(3), 416–426. https://doi.org/10.1158/1535-7163.MCT-10-0811
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Jabeen, F., Panda, S. S., Kondratyuk, T. P., Park, E.-J., Pezzuto, J. M., Ihsan-ul-Haq, null, Hall, C. D., & Katritzky, A. R. (2015). Synthesis, molecular docking and anticancer studies of peptides and iso-peptides. Bioorganic & Medicinal Chemistry Letters, 25(15), 2980–2984. https://doi.org/10.1016/j.bmcl.2015.05.020
  • Jakubczyk, A., Karaś, M., Rybczyńska-Tkaczyk, K., Zielińska, E., & Zieliński, D. (2020). Current trends of bioactive peptides—New sources and therapeutic effect. Foods, 9(7), 846. https://doi.org/10.3390/foods9070846
  • James, J. K., Pike, D. H., Khan, I. J., & Nanda, V. (2018). Structural and dynamic properties of allergen and non-allergen forms of tropomyosin. Structure, 26(7), 997–1006.e5. https://doi.org/10.1016/j.str.2018.05.002
  • Jiang, H., & Li, H. (2021). Prognostic values of tumoral MMP2 and MMP9 overexpression in breast cancer: A systematic review and meta-analysis. BMC Cancer, 21(1), 149. https://doi.org/10.1186/s12885-021-07860-2
  • Kadel, S., Pellerin, G., Thibodeau, J., Perreault, V., Lainé, C., & Bazinet, L. (2019). How molecular weight cut-offs and physicochemical properties of polyether sulfone membranes affect peptide migration and selectivity during electrodialysis with filtration membranes. Membranes, 9(11), 153. https://doi.org/10.3390/membranes9110153
  • Kaszak, I., Witkowska-Piłaszewicz, O., Niewiadomska, Z., Dworecka-Kaszak, B., Ngosa Toka, F., & Jurka, P. (2020). Role of cadherins in cancer—A review. International Journal of Molecular Sciences, 21(20), 7624. https://doi.org/10.3390/ijms21207624
  • Krepela, E., Procházka, J., Liul, X., Fiala, P., & Kinkor, Z. (2004). Increased expression of Apaf-1 and procaspase-3 and the functionality of intrinsic apoptosis apparatus in non-small cell lung carcinoma. Biological Chemistry, 385(2), 153–168. https://doi.org/10.1515/BC.2004.034
  • Kojima, Y., Nakayama, M., Nishina, T., Nakano, H., Koyanagi, M., Takeda, K., Okumura, K., & Yagita, H. (2011). Importin β1 protein-mediated nuclear localization of death receptor 5 (DR5) limits DR5/tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL)-induced cell death of human tumor cells. The Journal of Biological Chemistry, 286(50), 43383–43393. https://doi.org/10.1074/jbc.M111.309377
  • Kostrzewa, T., Sahu, K. K., Gorska-Ponikowska, M., Tuszynski, J. A., & Kuban-Jankowska, A. (2018). Synthesis of small peptide compounds, molecular docking, and inhibitory activity evaluation against phosphatases PTP1B and SHP2. Drug Design, Development and Therapy, 12, 4139–4147. https://doi.org/10.2147/DDDT.S186614
  • Levine, A. J. (2020). p53: 800 Million years of evolution and 40 years of discovery. Nature Reviews Cancer, 20(8), 471–480. https://doi.org/10.1038/s41568-020-0262-1
  • Li, H., Qiu, Z., Li, F., & Wang, C. (2017). The relationship between MMP-2 and MMP-9 expression levels with breast cancer incidence and prognosis. Oncology Letters, 14(5), 5865–5870. https://doi.org/10.3892/ol.2017.6924
  • Li, P., Zhou, L., Zhao, T., Liu, X., Zhang, P., Liu, Y., Zheng, X., & Li, Q. (2017). Caspase-9: Structure, mechanisms and clinical application. Oncotarget, 8(14), 23996–24008. https://doi.org/10.18632/oncotarget.15098
  • Liao, S., Li, J., Yu, L., & Sun, S. (2017). Protein tyrosine phosphatase 1B expression contributes to the development of breast cancer. Journal of Zhejiang University. Science. B, 18(4), 334–342. https://doi.org/10.1631/jzus.B1600184
  • Liscano, Y., Oñate-Garzón, J., & Delgado, J. P. (2020). Peptides with dual antimicrobial–anticancer activity: Strategies to overcome peptide limitations and rational design of anticancer peptides. Molecules, 25(18), 4245. Article 18. https://doi.org/10.3390/molecules25184245
  • Liu, H., Zhao, Z., Zhang, L., Li, Y., Jain, A., Barve, A., Jin, W., Liu, Y., Fetse, J., & Cheng, K. (2019). Discovery of low-molecular weight anti-PD-L1 peptides for cancer immunotherapy. Journal for Immunotherapy of Cancer, 7(1), 270. https://doi.org/10.1186/s40425-019-0705-y
  • Mantovani, F., Collavin, L., & Del Sal, G. (2019). Mutant p53 as a guardian of the cancer cell. Cell Death & Differentiation, 26(2), 199–212. https://doi.org/10.1038/s41418-018-0246-9
  • Martínez-Limón, A., Joaquin, M., Caballero, M., Posas, F., & de Nadal, E. (2020). The p38 pathway: From biology to cancer therapy. International Journal of Molecular Sciences, 21(6), 1913. https://doi.org/10.3390/ijms21061913
  • Miricescu, D., Diaconu, C., Stefani, C., Stanescu, A. M., Totan, A., Rusu, I., Bratu, O., Spinu, D., & Greabu, M. (2020). The serine/threonine protein kinase (Akt)/protein kinase B (PkB) signaling pathway in breast cancer. Journal of Mind and Medical Sciences, 7(1), 34–39. https://doi.org/10.22543/7674.71.P3439
  • Mishra, A., & Dey, S. (2019). Molecular docking studies of a cyclic octapeptide-cyclosaplin from sandalwood. Biomolecules, 9(11), 740. https://doi.org/10.3390/biom9110740
  • Mishra, A., Gauri, S. S., Mukhopadhyay, S. K., Chatterjee, S., Das, S. S., Mandal, S. M., & Dey, S. (2014). Identification and structural characterization of a new pro-apoptotic cyclic octapeptide cyclosaplin from somatic seedlings of Santalum album L. Peptides, 54, 148–158. https://doi.org/10.1016/j.peptides.2014.01.023
  • Mita, A. C., Mita, M. M., Nawrocki, S. T., & Giles, F. J. (2008). Survivin: Key regulator of mitosis and apoptosis and novel target for cancer therapeutics. Clinical Cancer Research, 14(16), 5000–5005. https://doi.org/10.1158/1078-0432.CCR-08-0746
  • Modi, S. J., & Kulkarni, V. M. (2019). Vascular endothelial growth factor receptor (VEGFR-2)/KDR inhibitors: Medicinal chemistry perspective. Medicine in Drug Discovery, 2, 100009. https://doi.org/10.1016/j.medidd.2019.100009
  • Narayan, S., Mittal, A., & Vidhyapeeth, J. (2015). Salvia splendens roem ex schult: a review of phytochemical and pharmacological studies.
  • Nayeb, A., Jabari, S., & Yousefi Nejad Attari, M. (2016). A combination of factor analysis and combined approach techniques (AHP-TOPSIS) for ranking criteria and evaluating the factors affecting brand.
  • Nguyen, C., & Nguyen, V. D. (2016). Discovery of azurin-like anticancer bacteriocins from human gut microbiome through homology modeling and molecular docking against the tumor suppressor p53. BioMed Research International, 2016, 8490482. https://doi.org/10.1155/2016/8490482
  • O’Bryon, I., Jenson, S. C., & Merkley, E. D. (2020). Flying blind, or just flying under the radar? The underappreciated power of de novo methods of mass spectrometric peptide identification. Protein Science, 29(9), 1864–1878. https://doi.org/10.1002/pro.3919
  • O’Donovan, N., Crown, J., Stunell, H., Hill, A. D. K., McDermott, E., O’Higgins, N., & Duffy, M. J. (2003). Caspase 3 in breast cancer. Clinical Cancer Research, 9(2), 738–742.
  • Oelkrug, C., Hartke, M., & Schubert, A. (2015). Mode of action of anticancer peptides (ACPs) from amphibian origin. Anticancer Research, 35(2), 635–643.
  • Peng, Y.-H., Shiao, H.-Y., Tu, C.-H., Liu, P.-M., Hsu, J. T.-A., Amancha, P. K., Wu, J.-S., Coumar, M. S., Chen, C.-H., Wang, S.-Y., Lin, W.-H., Sun, H.-Y., Chao, Y.-S., Lyu, P.-C., Hsieh, H.-P., & Wu, S.-Y. (2013). Protein kinase inhibitor design by targeting the Asp-Phe-Gly (DFG) motif: The role of the DFG motif in the design of epidermal growth factor receptor inhibitors. Journal of Medicinal Chemistry, 56(10), 3889–3903. https://doi.org/10.1021/jm400072p
  • Persad, R., Liu, C., Wu, T.-T., Houlihan, P. S., Hamilton, S. R., Diehl, A. M., & Rashid, A. (2004). Overexpression of caspase-3 in hepatocellular carcinomas. Modern Pathology, 17(7), 861–867. https://doi.org/10.1038/modpathol.3800146
  • Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R. D., Kalé, L., & Schulten, K. (2005). Scalable molecular dynamics with NAMD. Journal of Computational Chemistry, 26(16), 1781–1802. https://doi.org/10.1002/jcc.20289
  • Popp, A., Wu, L., Keiderling, T. A., & Hauser, K. (2014). Effect of hydrophobic interactions on the folding mechanism of β-hairpins. The Journal of Physical Chemistry. B, 118(49), 14234–14242. https://doi.org/10.1021/jp506658x
  • Prescott, J. A., & Cook, S. J. (2018). Targeting IKKβ in cancer: Challenges and opportunities for the therapeutic utilisation of IKKβ inhibitors. Cells, 7(9), 115. PubMed https://doi.org/10.3390/cells7090115
  • Putt, K. S., Chen, G. W., Pearson, J. M., Sandhorst, J. S., Hoagland, M. S., Kwon, J.-T., Hwang, S.-K., Jin, H., Churchwell, M. I., Cho, M.-H., Doerge, D. R., Helferich, W. G., & Hergenrother, P. J. (2006). Small-molecule activation of procaspase-3 to caspase-3 as a personalized anticancer strategy. Nature Chemical Biology, 2(10), 543–550. https://doi.org/10.1038/nchembio814
  • Quintal-Bojórquez, N. d C., Carrillo-Cocom, L. M., Hernández-Álvarez, A. J., & Segura-Campos, M. R. (2021). Anticancer activity of protein fractions from chia (Salvia hispanica L.). Journal of Food Science, 86(7), 2861–2871. https://doi.org/10.1111/1750-3841.15780
  • Quintal-Bojórquez, N., & Segura-Campos, M. R. (2021). Bioactive peptides as therapeutic adjuvants for cancer. Nutrition and Cancer, 73(8), 1309–1321. https://doi.org/10.1080/01635581.2020.1813316
  • Qureshi, M. A., & Javed, S. (2021). Aflatoxin B1 induced structural and conformational changes in bovine serum albumin: A multispectroscopic and circular dichroism-based study. ACS Omega, 6(28), 18054–18064. https://doi.org/10.1021/acsomega.1c01799
  • Raghavan, V., Agrahari, M., & Gowda, D. K. (2019). Virtual screening of p53 mutants reveals Y220S as an additional rescue drug target for PhiKan083 with higher binding characteristics. Computational Biology and Chemistry, 80, 398–408. https://doi.org/10.1016/j.compbiolchem.2019.05.005
  • Rampogu, S., Baek, A., Park, C., Son, M., Parate, S., Parameswaran, S., Park, Y., Shaik, B., Kim, J. H., Park, S. J., & Lee, K. W. (2019). Discovery of small molecules that target vascular endothelial growth factor receptor-2 signalling pathway employing molecular modelling studies. Cells, 8(3), 269. https://doi.org/10.3390/cells8030269
  • Reva, B. A., Finkelstein, A. V., & Skolnick, J. (1998). What is the probability of a chance prediction of a protein structure with an RMSD of 6 Å? Folding & Design, 3(2), 141–147. https://doi.org/10.1016/S1359-0278(98)00019-4
  • Sánchez Acosta, Y. A. (2016). Diseño de péptidos antimicrobianos derivados de Dermaseptina S4. Retrieved from https://repositorio.unal.edu.co/handle/unal/55719
  • Sangande, F., Julianti, E., & Tjahjono, D. H. (2020). Ligand-based pharmacophore modeling, molecular docking, and molecular dynamic studies of dual tyrosine kinase inhibitor of EGFR and VEGFR2. International Journal of Molecular Sciences, 21(20), 7779. https://doi.org/10.3390/ijms21207779
  • Sanhueza, C., Wehinger, S., Castillo Bennett, J., Valenzuela, M., Owen, G. I., & Quest, A. F. G. (2015). The twisted survivin connection to angiogenesis. Molecular Cancer, 14(1), 198. https://doi.org/10.1186/s12943-015-0467-1
  • Scodeller, P., & Asciutto, E. K. (2020). Targeting tumors using peptides. Molecules, 25(4), 808. https://doi.org/10.3390/molecules25040808
  • Shoombuatong, W., Schaduangrat, N., & Nantasenamat, C. (2018). Unraveling the bioactivity of anticancer peptides as deduced from machine learning. EXCLI Journal, 17, 734–752. https://doi.org/10.17179/excli2018-1447
  • Siahaan, P., Darmastuti, N., Aisyafalah, S., Sasongko, N., Hudiyanti, D., Asy’ari, M., & Prasasty, V. (2020). Probing the interaction between EC1-EC2 domain of E-cadherin with conformational structure of cyclic ADTC7 (Ac-CDTPDC-NH 2) peptide using molecular docking approach. Journal of Physics: Conference Series, 1524(1), 012081. https://doi.org/10.1088/1742-6596/1524/1/012081
  • Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 71(3), 209–249. https://doi.org/10.3322/caac.21660
  • Szymonowicz, K., Oeck, S., Malewicz, N. M., & Jendrossek, V. (2018). New insights into protein kinase B/Akt signaling: Role of localized Akt activation and compartment-specific target proteins for the cellular radiation response. Cancers, 10(3), 78. https://doi.org/10.3390/cancers10030078
  • Tran, N. H., Rahman, M. Z., He, L., Xin, L., Shan, B., & Li, M. (2016). Complete de novo assembly of monoclonal antibody sequences. Scientific Reports, 6(1), 31730. https://doi.org/10.1038/srep31730
  • Tripathi, R. K. P., & Ayyannan, S. R. (2021). Emerging chemical scaffolds with potential SHP2 phosphatase inhibitory capabilities—A comprehensive review. Chemical Biology & Drug Design, 97(3), 721–773. https://doi.org/10.1111/cbdd.13807
  • Tu, M., Cheng, S., Lu, W., & Du, M. (2018). Advancement and prospects of bioinformatics analysis for studying bioactive peptides from food-derived protein: Sequence, structure, and functions. TrAC Trends in Analytical Chemistry, 105, 7–17. https://doi.org/10.1016/j.trac.2018.04.005
  • Wagner, E. F., & Nebreda, Á. R. (2009). Signal integration by JNK and p38 MAPK pathways in cancer development. Nature Reviews Cancer, 9(8), 537–549. https://doi.org/10.1038/nrc2694
  • Wang, F., Wang, L., Zhao, Y., Li, Y., Ping, G., Xiao, S., Chen, K., Zhu, W., Gong, P., Yang, J., & Wu, C. (2014). A novel small-molecule activator of procaspase-3 induces apoptosis in cancer cells and reduces tumor growth in human breast, liver and gallbladder cancer xenografts. Molecular Oncology, 8(8), 1640–1652. https://doi.org/10.1016/j.molonc.2014.06.015
  • Wang, H.-C., Chiang, W.-F., Huang, H.-H., Shen, Y.-Y., & Chiang, H.-C. (2014). Src-homology 2 domain-containing tyrosine phosphatase 2 promotes oral cancer invasion and metastasis. BMC Cancer, 14(1), 442. https://doi.org/10.1186/1471-2407-14-442
  • Warrier, N. M., Agarwal, P., & Kumar, P. (2020). Emerging importance of survivin in stem cells and cancer: The development of new cancer therapeutics. Stem Cell Reviews and Reports, 16(5), 828–852. https://doi.org/10.1007/s12015-020-09995-4
  • Xue, L. C., Rodrigues, J. P., Kastritis, P. L., Bonvin, A. M., & Vangone, A. (2016). PRODIGY: A web server for predicting the binding affinity of protein–protein complexes. Bioinformatics, 32(23), 3676–3678. https://doi.org/10.1093/bioinformatics/btw514
  • Yadav, P., Yadav, R., Jain, S., & Vaidya, A. (2021). Caspase-3: A primary target for natural and synthetic compounds for cancer therapy. Chemical Biology & Drug Design, 98(1), 144–165. https://doi.org/10.1111/cbdd.13860
  • Yammine, S., Rabagliato, R., Vitrac, X., Peuchot, M. M., & Ghidossi, R. (2019). Selecting ultrafiltration membranes for fractionation of high added value compounds from grape pomace extracts. OENO One, 53(3). https://doi.org/10.20870/oeno-one.2019.53.3.2343
  • Yan, J.-D., Liu, Y., Zhang, Z.-Y., Liu, G.-Y., Xu, J.-H., Liu, L.-Y., & Hu, Y.-M. (2015). Expression and prognostic significance of VEGFR-2 in breast cancer. Pathology, Research and Practice, 211(7), 539–543. https://doi.org/10.1016/j.prp.2015.04.003
  • Yip, S.-C., Saha, S., & Chernoff, J. (2010). PTP1B: A double agent in metabolism and oncogenesis. Trends in Biochemical Sciences, 35(8), 442–449. https://doi.org/10.1016/j.tibs.2010.03.004
  • Yuan, J. P., Wang, L. W., Qu, A. P., Chen, J. M., Xiang, Q. M., Chen, C., Sun, S.-R., Pang, D.-W., Liu, J., & Li, Y. (2015). Quantum dots-based quantitative and in situ multiple imaging on Ki67 and cytokeratin to improve Ki67 assessment in breast cancer. PLOS One, 10(4), e0122734. https://doi.org/10.1371/journal.pone.0122734
  • Zarubin, T., & Han, J. (2005). Activation and signaling of the p38 MAP kinase pathway. Cell Research, 15(1), 11–18. https://doi.org/10.1038/sj.cr.7290257
  • Zhu, G., Pan, C., Bei, J.-X., Li, B., Liang, C., Xu, Y., & Fu, X. (2020). Mutant p53 in cancer progression and targeted therapies. Frontiers in Oncology,  10, 595187. https://doi.org/10.3389/fonc.2020.595187

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.