248
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Structural and dynamics insights into the GBA variants associated with Parkinson’s disease

, , , , , , , & show all
Pages 6256-6268 | Received 02 Apr 2023, Accepted 01 Jul 2023, Published online: 11 Jul 2023

References

  • Aharon-Peretz, J., Rosenbaum, H., & Gershoni-Baruch, R. (2004). Mutations in the glucocerebrosidase gene and Parkinson’s disease in Ashkenazi Jews. The New England Journal of Medicine, 351(19), 1972–1977. https://doi.org/10.1056/NEJMoa033277
  • Arturo-Terranova, D., Giraldo, L. J. M., & Satizábal, J. M. (2021). Research article frequency of GBA gene variants in complex disease patients in Southwestern Colombia. Genetics and Molecular Research, 20(2). https://doi.org/10.4238/gmr18818
  • Blanz, J., Zunke, F., Markmann, S., Damme, M., Braulke, T., Saftig, P., & Schwake, M. (2015). Mannose 6‐phosphate‐independent lysosomal sorting of LIMP‐2. Traffic, 16(10), 1127–1136. https://doi.org/10.1111/tra.12313
  • Brockmann, K. (2020). GBA-associated synucleinopathies: Prime candidates for alpha-synuclein targeting compounds. Frontiers in Cell and Developmental Biology, 8, 562522. https://doi.org/10.3389/fcell.2020.562522
  • Brockmann, K., Srulijes, K., Pflederer, S., Hauser, A.-K., Schulte, C., Maetzler, W., Gasser, T., & Berg, D. (2015). GBA-associated Parkinson’s disease: Reduced survival and more rapid progression in a prospective longitudinal study. Movement Disorders, 30(3), 407–411. https://doi.org/10.1002/mds.26071
  • Bunz, F., Hwang, P. M., Torrance, C., Waldman, T., Zhang, Y., Dillehay, L., Williams, J., Lengauer, C., Kinzler, K. W., & Vogelstein, B. (1999). Disruption of p53 in human cancer cells alters the responses to therapeutic agents. The Journal of Clinical Investigation, 104(3), 263–269. https://doi.org/10.1172/JCI6863
  • Chasman, D., & Adams, R. M. (2001). Predicting the functional consequences of non-synonymous single nucleotide polymorphisms: Structure-based assessment of amino acid variation. Journal of Molecular Biology, 307(2), 683–706. https://doi.org/10.1006/jmbi.2001.4510
  • Chen, G., Fan, M., Liu, Y., Sun, B., Liu, M., Wu, J., & Guo, M. (2019). Advances in MS based strategies for probing ligand-target interactions: Focus on soft ionization mass spectrometric techniques. Frontiers in Chemistry, 7, 703.
  • Choi, Y., & Chan, A. P. (2015). PROVEAN web server: A tool to predict the functional effect of amino acid substitutions and Indels. Bioinformatics, 31(16), 2745–2747. https://doi.org/10.1093/bioinformatics/btv195
  • Cilia, R., Tunesi, S., Marotta, G., Cereda, E., Siri, C., Tesei, S., Zecchinelli, A. L., Canesi, M., Mariani, C. B., Meucci, N., Sacilotto, G., Zini, M., Barichella, M., Magnani, C., Duga, S., Asselta, R., Soldà, G., Seresini, A., Seia, M., Pezzoli, G., & Goldwurm, S. (2016). Survival and dementia in GBA‐associated Parkinson’s disease: The mutation matters. Annals of Neurology, 80(5), 662–673. https://doi.org/10.1002/ana.24777
  • Clark, L. N., Ross, B. M., Wang, Y., Mejia-Santana, H., Harris, J., Louis, E. D., Cote, L. J., Andrews, H., Fahn, S., Waters, C., Ford, B., Frucht, S., Ottman, R., & Marder, K. (2007). Mutations in the glucocerebrosidase gene are associated with early-onset Parkinson disease. Neurology, 69(12), 1270–1277. https://doi.org/10.1212/01.wnl.0000276989.17578.02
  • Cooper, G. M., & Shendure, J. (2011). Needles in stacks of needles: Finding disease-causal variants in a wealth of genomic data. Nature Reviews. Genetics, 12(9), 628–640. https://doi.org/10.1038/nrg3046
  • Davis, A. A., Andruska, K. M., Benitez, B. A., Racette, B. A., Perlmutter, J. S., & Cruchaga, C. (2016). Variants in GBA, SNCA, and MAPT influence Parkinson disease risk, age at onset, and progression. Neurobiology of Aging, 37, 209.e201–209.e207. https://doi.org/10.1016/j.neurobiolaging.2015.09.014
  • Doss, C. G. P., & NagaSundaram, N. (2012). Investigating the structural impacts of I64T and P311S mutations in APE1-DNA complex: A molecular dynamics approach. PLOS One, 7(2), e31677. https://doi.org/10.1371/journal.pone.0031677
  • Dundas, J., Ouyang, Z., Tseng, J., Binkowski, A., Turpaz, Y., & Liang, J. (2006). CASTp: Computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Research, 34, W116–118. https://doi.org/10.1093/nar/gkl282
  • Gan-Or, Z., Amshalom, I., Kilarski, L. L., Bar-Shira, A., Gana-Weisz, M., Mirelman, A., Marder, K., Bressman, S., Giladi, N., & Orr-Urtreger, A. (2015). Differential effects of severe vs. mild GBA mutations on Parkinson disease. Neurology, 84(9), 880–887. https://doi.org/10.1212/wnl.0000000000001315
  • Gan-Or, Z., Giladi, N., Rozovski, U., Shifrin, C., Rosner, S., Gurevich, T., Bar-Shira, A., & Orr-Urtreger, A. (2008). Genotype-phenotype correlations between GBA mutations and Parkinson disease risk and onset. Neurology, 70(24), 2277–2283. https://doi.org/10.1212/01.wnl.0000304039.11891.29
  • Gotz, A. W., Williamson, M. J., Xu, D., Poole, D., Le Grand, S., & Walker, R. C. (2012). Routine microsecond molecular dynamics simulations with AMBER on GPUs. 1. Generalized born. Journal of Chemical Theory and Computation, 8(5), 1542–1555. https://doi.org/10.1021/ct200909j
  • Halgren, T. A. (1996). Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. Journal of Computational Chemistry, 17(5–6), 490–519. https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6<490::AID-JCC1>3.0.CO;2-P
  • Hara, T., Nakamura, K., Matsui, M., Yamamoto, A., Nakahara, Y., Suzuki-Migishima, R., Yokoyama, M., Mishima, K., Saito, I., Okano, H., & Mizushima, N. (2006). Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature, 441(7095), 885–889. https://doi.org/10.1038/nature04724
  • Hazan, J., Fonknechten, N., Mavel, D., Paternotte, C., Samson, D., Artiguenave, F., Davoine, C. S., Cruaud, C., Dürr, A., Wincker, P., Brottier, P., Cattolico, L., Barbe, V., Burgunder, J. M., Prud’homme, J. F., Brice, A., Fontaine, B., Heilig, B., & Weissenbach, J. (1999). Spastin, a new AAA protein, is altered in the most frequent form of autosomal dominant spastic paraplegia. Nature Genetics, 23(3), 296–303. https://doi.org/10.1038/15472
  • Höglinger, G., Schulte, C., Jost, W. H., Storch, A., Woitalla, D., Krüger, R., Falkenburger, B., & Brockmann, K. (2022). GBA-associated PD: Chances and obstacles for targeted treatment strategies. Journal of Neural Transmission, 129(9), 1219–1233. https://doi.org/10.1007/s00702-022-02511-7
  • Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B. A., Thiessen, P. A., Yu, B., Zaslavsky, L., Zhang, J., & Bolton, E. E. (2023). PubChem 2023 update. Nucleic Acids Research, 51(D1), D1373–D1380. https://doi.org/10.1093/nar/gkac956
  • Klionsky, D. J., Petroni, G., Amaravadi, R. K., Baehrecke, E. H., Ballabio, A., Boya, P., Bravo-San Pedro, J. M., Cadwell, K., Cecconi, F., Choi, A. M. K., Choi, M. E., Chu, C. T., Codogno, P., Colombo, M. I., Cuervo, A. M., Deretic, V., Dikic, I., Elazar, Z., Eskelinen, E.-L., … Pietrocola, F. (2021). Autophagy in major human diseases. The EMBO Journal, 40(19), e108863. https://doi.org/10.15252/embj.2021108863
  • Komatsu, M., Waguri, S., Chiba, T., Murata, S., Iwata, J-i., Tanida, I., Ueno, T., Koike, M., Uchiyama, Y., Kominami, E., & Tanaka, K. (2006). Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature, 441(7095), 880–884. https://doi.org/10.1038/nature04723
  • Kopytova, A. E., Rychkov, G. N., Nikolaev, M. A., Baydakova, G. V., Cheblokov, A. A., Senkevich, K. A., Bogdanova, D. A., Bolshakova, O. I., Miliukhina, I. V., Bezrukikh, V. A., Salogub, G. N., Sarantseva, S. V., Usenko, T. C., Zakharova, E. Y., Emelyanov, A. K., & Pchelina, S. N. (2021). Ambroxol increases glucocerebrosidase (GCase) activity and restores GCase translocation in primary patient-derived macrophages in Gaucher disease and Parkinsonism. Parkinsonism & Related Disorders, 84, 112–121. https://doi.org/10.1016/j.parkreldis.2021.02.003
  • Kumar, D. T., Iyer, S., Christy, J. P., Siva, R., Tayubi, I. A., Doss, C. G. P., & Zayed, H. (2019). A comparative computational approach toward pharmacological chaperones (NN-DNJ and Ambroxol) on N370S and L444P mutations causing Gaucher’s disease. Advances in Protein Chemistry and Structural Biology, 114, 315–339.
  • Kwon, N. H., Fox, P. L., & Kim, S. (2019). Aminoacyl-tRNA synthetases as therapeutic targets. Nature Reviews. Drug Discovery, 18(8), 629–650. https://doi.org/10.1038/s41573-019-0026-3
  • Li, B., Severson, E., Pignon, J.-C., Zhao, H., Li, T., Novak, J., Shen H., Aster, J. C., Rodig, S., Signoretti, S., Liu, J. S., & Liu, X. S. (2016). Comprehensive analyses of tumor immunity: Implications for cancer immunotherapy. Genome Biology, 17(1), 1–16.
  • Lieberman, R. L., D'aquino, J. A., Ringe, D., & Petsko, G. A. (2009). Effects of pH and iminosugar pharmacological chaperones on lysosomal glycosidase structure and stability. Biochemistry, 48(22), 4816–4827. https://doi.org/10.1021/bi9002265
  • Mahmood, A., Shah, A. A., Umair, M., Wu, Y., & Khan, A. (2021). Recalling the pathology of Parkinson’s disease; lacking exact figure of prevalence and genetic evidence in Asia with an alarming outcome: A time to step‐up. Clinical Genetics, 100(6), 659–677. https://doi.org/10.1111/cge.14019
  • Malerba, M., & Ragnoli, B. (2008). Ambroxol in the 21st century: Pharmacological and clinical update. Expert Opinion on Drug Metabolism & Toxicology, 4(8), 1119–1129. https://doi.org/10.1517/17425255.4.8.1119
  • Miller, B. R., III, McGee, T. D., Jr., Swails, J. M., Homeyer, N., Gohlke, H., & Roitberg, A. E. (2012). MMPBSA.py: An efficient program for end-state free energy calculations. Journal of Chemical Theory and Computation, 8(9), 3314–3321. https://doi.org/10.1021/ct300418h
  • Moberly, J. G., Bernards, M. T., & Waynant, K. V. (2018). Key features and updates for origin 2018. Journal of Cheminformatics, 10(1), 5. https://doi.org/10.1186/s13321-018-0259-x
  • Naïm, M., Bhat, S., Rankin, K. N., Dennis, S., Chowdhury, S. F., Siddiqi, I., Drabik, P., Sulea, T., Bayly, C. I., Jakalian, A., & Purisima, E. O. (2007). Solvated interaction energy (SIE) for scoring protein − ligand binding affinities. 1. Exploring the parameter space. Journal of Chemical Information and Modeling, 47(1), 122–133. https://doi.org/10.1021/ci600406v
  • Pradas, E., & Martinez-Vicente, M. (2023). The consequences of GBA deficiency in the autophagy–Lysosome system in Parkinson’s disease associated with the GBA. Cells, 12(1), 191. https://doi.org/10.3390/cells12010191
  • Reynolds, C. H., & Holloway, M. K. (2011). Thermodynamics of ligand binding and efficiency. ACS Medicinal Chemistry Letters, 2(6), 433–437. https://doi.org/10.1021/ml200010k
  • Rodríguez-Casado, A. (2012). In silico investigation of functional nsSNPs – an approach to rational drug design. Research and Reports in Medicinal Chemistry, 31–42.
  • Roe, D. R., & Cheatham, T. E. III (2013). PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. Journal of Chemical Theory and Computation, 9(7), 3084–3095. https://doi.org/10.1021/ct400341p
  • Salomon-Ferrer, R., Case, D. A., & Walker, R. C. (2013). An overview of the Amber biomolecular simulation package. Wiley Interdisciplinary Reviews, 3(2), 198–210. https://doi.org/10.1002/wcms.1121
  • Samad, A., Ajmal, A., Mahmood, A., Khurshid, B., Li, P., Jan, S. M., Rehman, A. U., He, P., Abdalla, A. N., Umair, M., Hu, J., & Wadood, A. (2023). Identification of novel inhibitors for SARS-CoV-2 as therapeutic options using machine learning-based virtual screening, molecular docking and MD simulation. Frontiers in Molecular Biosciences, 10. https://doi.org/10.3389/fmolb.2023.1060076
  • Schwarz, J. M., Cooper, D. N., Schuelke, M., & Seelow, D. (2014). MutationTaster2: Mutation prediction for the deep-sequencing age. Nature Methods, 11(4), 361–362. https://doi.org/10.1038/nmeth.2890
  • Shah, A. A., Amjad, M., Hassan, J.-U., Ullah, A., Mahmood, A., Deng, H., Ali, Y., Gul, F., & Xia, K. (2022). Molecular insights into the role of pathogenic nsSNPs in GRIN2B gene provoking neurodevelopmental disorders. Genes, 13(8), 1332. https://doi.org/10.3390/genes13081332
  • Shastry, B. S. (2009). SNPs: Impact on gene function and phenotype. Methods in Molecular Biology, 578, 3–22. https://doi.org/10.1007/978-1-60327-411-1_1
  • Straniero, L., Rimoldi, V., Monfrini, E., Bonvegna, S., Melistaccio, G., Lake, J., Soldà, G., Aureli, M., Keagle, P., Foroud, T., Landers, J. E, Blauwendraat, C., Zecchinelli, A., Cilia, R., Di Fonzo, A., Pezzoli, G., Duga, S., Asselta, R., Shankaracharya, S. (2022). Role of lysosomal gene variants in modulating GBA‐associated Parkinson’s disease risk. Movement Disorders, 37(6), 1202–1210. https://doi.org/10.1002/mds.28987
  • Swan, M., & Saunders-Pullman, R. (2013). The association between ss-glucocerebrosidase mutations and Parkinsonism. Current Neurology and Neuroscience Reports, 13(8), 1–10. https://doi.org/10.1007/s11910-013-0368-x
  • Tayebi, N., Walker, J., Stubblefield, B., Orvisky, E., LaMarca, M. E., Wong, K., Rosenbaum, H., Schiffmann, R., Bembi, B., & Sidransky, E. (2003). Gaucher disease with Parkinsonian manifestations: Does glucocerebrosidase deficiency contribute to a vulnerability to Parkinsonism? Molecular Genetics and Metabolism, 79(2), 104–109. https://doi.org/10.1016/S1096-7192(03)00071-4
  • Ullah, A., Shah, A. A., Syed, F., Mahmood, A., Ur Rehman, H., Khurshid, B., Samad, A., Ahmad, W., & Basit, S. (2023). Molecular dynamic simulation analysis of a novel missense variant in CYB5R3 gene in patients with methemoglobinemia. Medicina, 59(2), 379. https://doi.org/10.3390/medicina59020379
  • Wang, Q., Mehmood, A., Wang, H., Xu, Q., Xiong, Y., & Wei, D.-Q J. M. (2019). Computational screening and analysis of lung cancer related non-synonymous single nucleotide polymorphisms on the human Kirsten rat sarcoma gene. Molecules, 24(10), 1951.https://doi.org/10.3390/molecules24101951
  • Zunke, F., Andresen, L., Wesseler, S., Groth, J., Arnold, P., Rothaug, M., Mazzulli, J. R., Krainc, D., Blanz, J., Saftig, P., & Schwake, M. (2016). Characterization of the complex formed by β-glucocerebrosidase and the lysosomal integral membrane protein type-2. Proceedings of the National Academy of Sciences of the United States of America, 113(14), 3791–3796. https://doi.org/10.1073/pnas.1514005113

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.