203
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Structure based virtual screening and discovery of novel inhibitors against FabD protein of Mycobacterium tuberculosis

, &
Pages 6280-6291 | Received 03 Mar 2023, Accepted 01 Jul 2023, Published online: 09 Jul 2023

References

  • A. Hofmann, V. (1954). Rauhaimbin und Isorauhimbin, zwei neue Alkaloid aus Rauwalofia serpentina Benth. Helvetica Chimica Acta, 37(1), 314–320. https://doi.org/10.1002/hlca.19540370140
  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindah, E. (2015). Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Bashir, S., Alam, M., Adhikari, A., Shrestha, R. L., Yousuf, S., Ahmad, B., Parveen, S., Aman, A., & Iqbal Choudhary, M. (2014). New antileishmanial sesquiterpene coumarins from Ferula narthex Boiss. Phytochemistry Letters, 9(1), 46–50. https://doi.org/10.1016/j.phytol.2014.04.009
  • Boyle, N. M. O., Banck, M., James, C. A., Morley, C., Vandermeersch, T., & Hutchison, G. R. (2011). Open Babel : An open chemical toolbox. Journal of Cheminformatic, 3, 33. https://doi.org/10.1186/1758-2946-3-33
  • Brennan, P. J., & Nikaido, H. (1995). The envelope of mycobacteria. Annual Review of Biochemistry, 64, 29–63. https://doi.org/10.1146/annurev.bi.64.070195.000333
  • Corporate, A. (2008). Discovery studio life science modeling and simulations (pp. 1–8). Researchgate.Net.
  • Dal Piaz, F., Vassallo, A., Lepore, L., Tosco, A., Bader, A., & De Tommasi, N. (2009). Sesterterpenes as tubulin tyrosine ligase inhibitors. First insight of structure-activity relationships and discovery of new lead. Journal of Medicinal Chemistry, 52(12), 3814–3828. https://doi.org/10.1021/jm801637f
  • De Souza, M. V. N., Ferreira, M. D. L., Pinheiro, A. C., Saraiva, M. F., De Almeida, M. V., & Valle, M. S. (2008). Synthesis and biological aspects of mycolic acids: An important target against Mycobacterium tuberculosis. TheScientificWorldJournal, 8, 720–751. https://doi.org/10.1100/tsw.2008.99
  • Dey, A. (2011). Ethnobotanical aspects of Rauvolfia serpentina (L). Benth ex kurz in India, Nepal and Bangladesh. Journal of Medicinal Plants Research, 5(2), 144–150.
  • Fazly Bazzaz, B. S., Iranshahi, M., Naderinasab, M., Hajian, S., Sabeti, Z., & Masumi, E. (2010). Evaluation of the effects of galbanic acid from Ferula szowitsiana and conferol from F. badrakema, as modulators of multi-drug resistance in clinical isolates of Escherichia coli and Staphylococcus aureus. Research in Pharmaceutical Sciences, 5(1), 25–32.
  • Global tuberculosis report. (2019). Geneva: World Health Organization. Licence: CC BY-NC-SA 3.0 IGO.
  • Jagadeb, M., Rath, S. N., & Sonawane, A. (2019). In silico discovery of potential drug molecules to improve the treatment of isoniazid-resistant Mycobacterium tuberculosis. Journal of Biomolecular Structure and Dynamics, 37(13), 3388–3398. https://doi.org/10.1080/07391102.2018.1515116
  • Jaghoori, M. M., Bleijlevens, B., & Olabarriaga, S. D. (2016). 1001 Ways to run AutoDock Vina for virtual screening. Journal of Computer-Aided Molecular Design, 30(3), 237–249. https://doi.org/10.1007/s10822-016-9900-9
  • Karatzas, E., Karatzas, E., Zamora, J. E., Athanasiadis, E., Athanasiadis, E., Athanasiadis, E., Dellis, D., Cournia, Z., Spyrou, G. M., & Spyrou, G. M. (2020). ChemBioServer 2.0: An advanced web server for filtering, clustering and networking of chemical compounds facilitating both drug discovery and repurposing. Bioinformatics, 36(8), 2602–2604. https://doi.org/10.1093/bioinformatics/btz976
  • Karunakaran, K., & Muniyan, R. (2022). Identification of allosteric inhibitor against AKT1 through structure-based virtual screening. Molecular Diversity, 0123456789. https://doi.org/10.1007/s11030-022-10582-7
  • Knoll, K. E., van der Walt, M. M., & Loots, D. T. (2022). In silico drug discovery strategies identified ADMET properties of decoquinate RMB041 and its potential drug targets against Mycobacterium tuberculosis. Microbiology Spectrum, 10(2), 02315-21. https://doi.org/10.1128/spectrum.02315-21
  • Kremer, L., Nampoothiri, K. M., Lesjean, S., Dover, L. G., Graham, S., Betts, J., Brennan, P. J., Minnikin, D. E., Locht, C., & Besra, G. S. (2001). Biochemical characterization of acyl carrier protein (AcpM) and malonyl-CoA:AcpM transacylase (mtFabD), two major components of Mycobacterium tuberculosis fatty acid synthase II. The Journal of Biological Chemistry, 276(30), 27967–27974. https://doi.org/10.1074/jbc.M103687200
  • Li, Z., Huang, Y., Ge, J., Fan, H., Zhou, X., Li, S., Bartlam, M., Wang, H., & Rao, Z. (2007). The crystal structure of MCAT from Mycobacterium tuberculosis reveals three new catalytic models. Journal of Molecular Biology, 371(4), 1075–1083. https://doi.org/10.1016/j.jmb.2007.06.004
  • Louw, G. E., Warren, R. M., Gey Van Pittius, N. C., McEvoy, C. R. E., Van Helden, P. D., & Victor, T. C. (2009). A balancing act: Efflux/influx in mycobacterial drug resistance. Antimicrobial Agents and Chemotherapy, 53(8), 3181–3189. https://doi.org/10.1128/AAC.01577-08
  • Marrakchi, H., Lanéelle, M. A., & Daffé, M. (2014). Mycolic acids: Structures, biosynthesis, and beyond. Chemistry & Biology, 21(1), 67–85. https://doi.org/10.1016/j.chembiol.2013.11.011
  • Martínez-Jiménez, F., Papadatos, G., Yang, L., Wallace, I. M., Kumar, V., Pieper, U., Sali, A., Brown, J. R., Overington, J. P., & Marti-Renom, M. A. (2013). Target prediction for an open access set of compounds active against Mycobacterium tuberculosis. PLOS Computational Biology, 9(10), e1003253. https://doi.org/10.1371/journal.pcbi.1003253
  • Mascarenhas, N. M., & Kästner, J. (2013). How maltose influences structural changes to bind to maltose-binding protein: Results from umbrella sampling simulation. Proteins, 81(2), 185–198. https://doi.org/10.1002/prot.24174
  • Morris, G. M., Ruth, H., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). Software news and updates AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Mueller, E. A., & Levin, P. A. (2020). Bacterial cell wall quality control during environmental stress. mBio, 11(5), 1–15. https://doi.org/10.1128/mBio.02456-20
  • Ra, L., & Mb, S. (2011). LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery. Journal of Chemical Information and Modeling, 51, 2778–2786.
  • Resende, D. I. S. P., Boonpothong, P., Sousa, E., Kijjoa, A., & Pinto, M. M. M. (2019). Chemistry of the fumiquinazolines and structurally related alkaloids. Natural Product Reports, 36(1), 7–34. https://doi.org/10.1039/c8np00043c
  • Rock, C. O., & Cronan, J. E. (1996). et Biophysica fatty acid biosynthesis. Biochimica et Biophysica Acta, 1302(1), 1–16. https://doi.org/10.1016/0005-2760(96)00056-2
  • Sander, T., Freyss, J., Von Korff, M., & Rufener, C. (2015). DataWarrior: An open-source program for chemistry aware data visualization and analysis. Journal of Chemical Information and Modeling, 55(2), 460–473. https://doi.org/10.1021/ci500588j
  • Sarathy, J. P., Dartois, V., & Lee, E. J. D. (2012). The role of transport mechanisms in Mycobacterium Tuberculosis drug resistance and tolerance. Pharmaceuticals, 5(11), 1210–1235. https://doi.org/10.3390/ph5111210
  • Schaeffer, M. L., Agnihotri, G., Volker, C., Kallender, H., Brennan, P. J., & Lonsdale, J. T. (2001). Purification and biochemical characterization of the Mycobacterium tuberculosis B-Ketoacyl-acyl carrier protein synthases KasA and KasB. The Journal of Biological Chemistry, 276(50), 47029–47037. https://doi.org/10.1074/jbc.M108903200
  • Schüttelkopf, A. W., & Van Aalten, D. M. F. (2004). PRODRG: A tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallographica-Section D, Biological Crystallography, 60(Pt 8), 1355–1363. https://doi.org/10.1107/S0907444904011679
  • Sharma, S., & Deep, S. (2020). In-silico drug repurposing for targeting SARS-CoV-2. Journal of Biomolecular Structure and Dynamics , 40(7), 3003-3010. https://doi.org/10.1080/07391102.2020.1844058.
  • Tousif, S., & Ahmad, S. (2015). Challenges of tuberculosis treatment with DOTS: An immune impairment perspective. Journal of Cell Science & Therapy, 06(05). https://doi.org/10.4172/2157-7013.1000223
  • Veyron-Churlet, R., Bigot, S., Guerrini, O., Verdoux, S., Malaga, W., Daffé, M., & Zerbib, D. (2005). The biosynthesis of mycolic acids in Mycobacterium tuberculosis relies on multiple specialized elongation complexes interconnected by specific protein-protein interactions. Journal of Molecular Biology, 353(4), 847–858. https://doi.org/10.1016/j.jmb.2005.09.016
  • Zeng, X., Zhang, P., He, W., Qin, C., Chen, S., Tao, L., Wang, Y., Tan, Y., Gao, D., Wang, B., Chen, Z., Chen, W., Jiang, Y. Y., & Chen, Y. Z. (2018). NPASS: Natural product activity and species source database for natural product research, discovery and tool development. Nucleic Acids Research, 46(D1), D1217–D1222. https://doi.org/10.1093/nar/gkx1026
  • Zhang, Y., Heym, B., Allen, B., Young, D., & Cole, S. (1992). The catalase – peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis. Nature, 358(6387), 591–593. https://doi.org/10.1038/358591a0

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.