79
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

In silico identification of D449-0032 compound as a putative SARS-CoV-2 Mpro inhibitor

ORCID Icon & ORCID Icon
Pages 6440-6447 | Received 10 Jan 2023, Accepted 03 Jul 2023, Published online: 09 Jul 2023

References

  • Ahmad, N., Badshah, S. L., Junaid, M., Ur Rehman, A., Muhammad, A., & Khan, K. (2021). Structural insights into the Zika virus NS1 protein inhibition using a computational approach. Journal of Biomolecular Structure & Dynamics, 39(8), 3004–3011. https://doi.org/10.1080/07391102.2020.1759453
  • Aljindan, R. Y., Al-Subaie, A. M., Al-Ohali, A. I., Kumar D, T., Doss C, G. P., & Kamaraj, B. (2021). Investigation of nonsynonymous mutations in the spike protein of SARS-CoV-2 and its interaction with the ACE2 receptor by molecular docking and MM/GBSA approach. Computers in Biology and Medicine, 135, 104654. https://doi.org/10.1016/j.compbiomed.2021.104654
  • Bhowmick, S., Saha, A., Osman, S. M., Alasmary, F. A., Almutairi, T. M., & Islam, M. A. (2021). Structure-based identification of SARS-CoV-2 main protease inhibitors from anti-viral specific chemical libraries: An exhaustive computational screening approach. Molecular Diversity, 25(3), 1979–1997. https://doi.org/10.1007/s11030-021-10214-6
  • Cannalire, R., Cerchia, C., Beccari, A. R., Di Leva, F. S., & Summa, V. (2022). Targeting SARS-CoV-2 Proteases and Polymerase for COVID-19 Treatment: State of the Art and Future Opportunities. Journal of Medicinal Chemistry, 65(4), 2716–2746. https://doi.org/10.1021/acs.jmedchem.0c01140
  • Chauhan, M., Bhardwaj, V. K., Kumar, A., Kumar, V., Kumar, P., Enayathullah, M. G., Thomas, J., George, J., Kumar, B. K., Purohit, R., Kumar, A., & Kumar, S. (2022). Theaflavin 3-gallate inhibits the main protease (Mpro) of SARS-CoV-2 and reduces its count in vitro. Scientific Reports, 12(1) Article 1. https://doi.org/10.1038/s41598-022-17558-5
  • Choudhary, M. I., Shaikh, M., Tul-Wahab, A., & Ur-Rahman, A. (2020). In silico identification of potential inhibitors of key SARS-CoV-2 3CL hydrolase (Mpro) via molecular docking, MMGBSA predictive binding energy calculations, and molecular dynamics simulation. PloS One, 15(7), e0235030. https://doi.org/10.1371/journal.pone.0235030
  • Dai, W., Zhang, B., Jiang, X.-M., Su, H., Li, J., Zhao, Y., Xie, X., Jin, Z., Peng, J., Liu, F., Li, C., Li, Y., Bai, F., Wang, H., Cheng, X., Cen, X., Hu, S., Yang, X., Wang, J., … Liu, H. (2020). Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease. Science (New York, N.Y.), 368(6497), 1331–1335. https://doi.org/10.1126/science.abb4489
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717. https://doi.org/10.1038/srep42717
  • Dallakyan, S., & Olson, A. J. (2015). Small-Molecule Library Screening by Docking with PyRx. In J. E. Hempel, C. H. Williams, & C. C. Hong (Eds.), Chemical biology: Methods and protocols (pp. 243–250). Springer. https://doi.org/10.1007/978-1-4939-2269-7_19
  • de Araujo, I. G., Pattaro-Júnior, J. R., Barbosa, C. G., Philippsen, G. S., Silva, A. R., Ioshino, R. S., Moraes, C. B., Freitas-Junior, L. H., Barros, L., Peralta, R. M., Fernandez, M. A., & Seixas, F. A. V. (2023). Potential of plant extracts in targeting SARS-CoV-2 main protease: An in vitro and in silico study. Journal of Biomolecular Structure and Dynamics, 1–10. https://doi.org/10.1080/07391102.2023.2166589
  • Duy Nguyen, D., Gao, K., Chen, J., Wang, R., & Wei, G.-W. (2020). Unveiling the molecular mechanism of SARS-CoV-2 main protease inhibition from 137 crystal structures using algebraic topology and deep learning. Chemical Science, 11(44), 12036–12046. https://doi.org/10.1039/D0SC04641H
  • Ferro, A. P., Flores Júnior, R., Finger-Teixeira, A., Parizotto, A. V., Bevilaqua, J. M., Oliveira, D. M. d., Molinari, H. B. C., Marchiosi, R., dos Santos, W. D., Seixas, F. A. V., & Ferrarese-Filho, O. (2020). Inhibition of Zea mays coniferyl aldehyde dehydrogenase by daidzin: A potential approach for the investigation of lignocellulose recalcitrance. Process Biochemistry, 90, 131–138. https://doi.org/10.1016/j.procbio.2019.11.024
  • Guerra, A., Mathews, S., Marić, M., Servio, P., & Rey, A. D. (2022). All-atom molecular dynamics of pure water–methane gas hydrate systems under pre-nucleation conditions: A direct comparison between experiments and simulations of transport properties for the Tip4p/Ice water model. Molecules, 27(15), 5019. https://doi.org/10.3390/molecules27155019
  • Gupta, S. S., Kumar, A., Shankar, R., & Sharma, U. (2021). In silico approach for identifying natural lead molecules against SARS-COV-2. Journal of Molecular Graphics & Modelling, 106, 107916. https://doi.org/10.1016/j.jmgm.2021.107916
  • Huang, J., & MacKerell, A. D., Jr. (2013). CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data. Journal of Computational Chemistry, 34(25), 2135–2145. https://doi.org/10.1002/jcc.23354
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in Science & Engineering, 9(3), 90–95. https://doi.org/10.1109/MCSE.2007.55
  • Ibrahim, M. A. A., Abdeljawaad, K. A. A., Abdelrahman, A. H. M., & Hegazy, M.-E F. (2021). Natural-like products as potential SARS-CoV-2 Mpro inhibitors: In-silico drug discovery. Journal of Biomolecular Structure & Dynamics, 39(15), 5722–5734. https://doi.org/10.1080/07391102.2020.1790037
  • Jin, Z., Du, X., Xu, Y., Deng, Y., Liu, M., Zhao, Y., Zhang, B., Li, X., Zhang, L., Peng, C., Duan, Y., Yu, J., Wang, L., Yang, K., Liu, F., Jiang, R., Yang, X., You, T., Liu, X., … Yang, H. (2020). Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 582(7811), 289–293. https://doi.org/10.1038/s41586-020-2223-y
  • Jones, G., Willett, P., Glen, R. C., Leach, A. R., & Taylor, R. (1997). Development and validation of a genetic algorithm for flexible docking. Journal of Molecular Biology, 267(3), 727–748. https://doi.org/10.1006/jmbi.1996.0897
  • Joshi, T., Sharma, P., Mathpal, S., Joshi, T., Maiti, P., Nand, M., Pande, V., & Chandra, S. (2022). Computational investigation of drug bank compounds against 3C-like protease (3CLpro) of SARS-CoV-2 using deep learning and molecular dynamics simulation. Molecular Diversity, 26(4), 2243–2256. https://doi.org/10.1007/s11030-021-10330-3
  • Kalbhor, M. S., Bhowmick, S., Alanazi, A. M., Patil, P. C., & Islam, M. A. (2021). Multi-step molecular docking and dynamics simulation-based screening of large antiviral specific chemical libraries for identification of Nipah virus glycoprotein inhibitors. Biophysical Chemistry, 270, 106537. https://doi.org/10.1016/j.bpc.2020.106537
  • Kalé, L., Skeel, R., Bhandarkar, M., Brunner, R., Gursoy, A., Krawetz, N., Phillips, J., Shinozaki, A., Varadarajan, K., & Schulten, K. (1999). NAMD2: Greater scalability for parallel molecular dynamics. Journal of Computational Physics, 151(1), 283–312. https://doi.org/10.1006/jcph.1999.6201
  • Lee, J., Worrall, L. J., Vuckovic, M., Rosell, F. I., Gentile, F., Ton, A.-T., Caveney, N. A., Ban, F., Cherkasov, A., Paetzel, M., & Strynadka, N. C. J. (2020). Crystallographic structure of wild-type SARS-CoV-2 main protease acyl-enzyme intermediate with physiological C-terminal autoprocessing site. Nature Communications, 11(1), 5877. https://doi.org/10.1038/s41467-020-19662-4
  • Li, Q., & Kang, C. (2020). Progress in developing inhibitors of SARS-CoV-2 3C-like protease. Microorganisms, 8(8), 1250. https://doi.org/10.3390/microorganisms8081250
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2012). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 64, 4–17. https://doi.org/10.1016/j.addr.2012.09.019
  • Macchiagodena, M., Pagliai, M., & Procacci, P. (2022). Characterization of the non-covalent interaction between the PF-07321332 inhibitor and the SARS-CoV-2 main protease. Journal of Molecular Graphics & Modelling, 110, 108042. https://doi.org/10.1016/j.jmgm.2021.108042
  • Marzi, M., Vakil, M. K., Bahmanyar, M., & Zarenezhad, E. (2022). Paxlovid: Mechanism of action, synthesis, and in silico study. BioMed Research International, 2022, e7341493. https://doi.org/10.1155/2022/7341493
  • O’Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., & Hutchison, G. R. (2011). Open Babel: An open chemical toolbox. Journal of Cheminformatics, 3(1), 33. https://doi.org/10.1186/1758-2946-3-33
  • Patel, P., Shrivastava, S. K., Sharma, P., Kurmi, B. D., Shirbhate, E., & Rajak, H. (2023). Hydroxamic acid derivatives as selective HDAC3 inhibitors: Computer-aided drug design strategies. Journal of Biomolecular Structure and Dynamics, 1–22. https://doi.org/10.1080/07391102.2023.2192804
  • Pattaro-Júnior, J. R., Araújo, I. G., Moraes, C. B., Barbosa, C. G., Philippsen, G. S., Freitas-Junior, L. H., Guidi, A. C., Mello, J. C. P. D., Peralta, R. M., Fernandez, M. A., Teixeira, R. R., & Seixas, F. A. V. (2022). Antiviral activity of Cenostigma pluviosum var. Peltophoroides extract and fractions against SARS-CoV-2. Journal of Biomolecular Structure and Dynamics, 1–12. https://doi.org/10.1080/07391102.2022.2120078
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera—A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R. D., Kalé, L., & Schulten, K. (2005). Scalable molecular dynamics with NAMD. Journal of Computational Chemistry, 26(16), 1781–1802. https://doi.org/10.1002/jcc.20289
  • Rakshit, G., Komal, Dagur, P., Biswas, A., Murtuja, S., & Jayaprakash, V. (2023). Chapter 9—Molecular docking and molecular dynamics in natural products-based drug discovery. In C. Egbuna, M. Rudrapal, & H. Tijjani (Eds.), Phytochemistry, computational tools and databases in drug discovery (pp. 195–212). Elsevier. https://doi.org/10.1016/B978-0-323-90593-0.00018-6
  • Rappe, A. K., Casewit, C. J., Colwell, K. S., Goddard, W. A. I., & Skiff, W. M. (1992). UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. Journal of the American Chemical Society, 114(25), 10024–10035. https://doi.org/10.1021/ja00051a040
  • Sander, T., Freyss, J., von Korff, M., Reich, J. R., & Rufener, C. (2009). OSIRIS, an entirely in-house developed drug discovery informatics system. Journal of Chemical Information and Modeling, 49(2), 232–246. https://doi.org/10.1021/ci800305f
  • Singh, R., Bhardwaj, V. K., & Purohit, R. (2021). Potential of turmeric-derived compounds against RNA‐dependent RNA polymerase of SARS‐CoV‐2: An in-silico approach. Computers in Biology and Medicine, 139, 104965. https://doi.org/10.1016/j.compbiomed.2021.104965
  • Singh, R., Bhardwaj, V. K., Sharma, J., Kumar, D., & Purohit, R. (2021). Identification of potential plant bioactive as SARS-CoV-2 Spike protein and human ACE2 fusion inhibitors. Computers in Biology and Medicine, 136, 104631. https://doi.org/10.1016/j.compbiomed.2021.104631
  • Singh, R., & Purohit, R. (2023). Multi-target approach against SARS-CoV-2 by stone apple molecules: A master key to drug design. Phytotherapy Research, 1-4. https://doi.org/10.1002/ptr.7772
  • Stierand, K., Maass, P. C., & Rarey, M. (2006). Molecular complexes at a glance: Automated generation of two-dimensional complex diagrams. Bioinformatics (Oxford, England), 22(14), 1710–1716. https://doi.org/10.1093/bioinformatics/btl150
  • Tahir Ul Qamar, M., Alqahtani, S. M., Alamri, M. A., & Chen, L.-L. (2020). Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants. Journal of Pharmaceutical Analysis, 10(4), 313–319. https://doi.org/10.1016/j.jpha.2020.03.009
  • Tao, X., Huang, Y., Wang, C., Chen, F., Yang, L., Ling, L., Che, Z., & Chen, X. (2020). Recent developments in molecular docking technology applied in food science: A review. International Journal of Food Science & Technology, 55(1), 33–45. https://doi.org/10.1111/ijfs.14325
  • Thomsen, R., & Christensen, M. H. (2006). MolDock: A new technique for high-accuracy molecular docking. Journal of Medicinal Chemistry, 49(11), 3315–3321. https://doi.org/10.1021/jm051197e
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Ullrich, S., & Nitsche, C. (2020). The SARS-CoV-2 main protease as drug target. Bioorganic & Medicinal Chemistry Letters, 30(17), 127377. https://doi.org/10.1016/j.bmcl.2020.127377
  • Wu, F., Zhao, S., Yu, B., Chen, Y.-M., Wang, W., Song, Z.-G., Hu, Y., Tao, Z.-W., Tian, J.-H., Pei, Y.-Y., Yuan, M.-L., Zhang, Y.-L., Dai, F.-H., Liu, Y., Wang, Q.-M., Zheng, J.-J., Xu, L., Holmes, E. C., & Zhang, Y.-Z. (2020). A new coronavirus associated with human respiratory disease in China. Nature, 579(7798), 265–269. https://doi.org/10.1038/s41586-020-2008-3
  • Yang, H., Xie, W., Xue, X., Yang, K., Ma, J., Liang, W., Zhao, Q., Zhou, Z., Pei, D., Ziebuhr, J., Hilgenfeld, R., Yuen, K. Y., Wong, L., Gao, G., Chen, S., Chen, Z., Ma, D., Bartlam, M., & Rao, Z. (2005). Design of wide-spectrum inhibitors targeting coronavirus main proteases. PLoS Biology, 3(10), e324. https://doi.org/10.1371/journal.pbio.0030324
  • Zhang, L., Lin, D., Sun, X., Curth, U., Drosten, C., Sauerhering, L., Becker, S., Rox, K., & Hilgenfeld, R. (2020). Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science (New York, N.Y.), 368(6489), 409–412. https://doi.org/10.1126/science.abb3405
  • Zoete, V., Cuendet, M. A., Grosdidier, A., & Michielin, O. (2011). SwissParam: A fast force field generation tool for small organic molecules. Journal of Computational Chemistry, 32(11), 2359–2368. https://doi.org/10.1002/jcc.21816

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.