122
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Development of a multi-epitope vaccine candidate against Pseudomonas aeruginosa causing urinary tract infection and evaluation of its immunoreactivity in a rabbit model

, , , &
Pages 6212-6227 | Received 21 Nov 2022, Accepted 27 Jun 2023, Published online: 24 Jul 2023

References

  • Ahmad, S., Shahid, F., Tahir Ul Qamar, M., Rehman, H., Abbasi, S. W., Sajjad, W., et al. (2021). Immuno-informatics analysis of PAKISTAN-based HCV subtype-3a for chimeric polypeptide vaccine design. Vaccines, 9(3), 293. https://doi.org/10.3390/vaccines9030293
  • Alexander, J., del Guercio, M. F., Maewal, A., Qiao, L., Fikes, J., Chesnut, R. W., Paulson, J., Bundle, D. R., DeFrees, S., & Sette, A. (2000). Linear PADRE T helper epitope and carbohydrate B cell epitope conjugates induce specific high titer IgG antibody responses. Journal of Immunology (Baltimore, Md.: 1950), 164(3), 1625–1633. https://doi.org/10.4049/jimmunol.164.3.1625
  • Ali, M., Pandey, R. K., Khatoon, N., Narula, A., Mishra, A., & Prajapati, V. K. (2017). Exploring dengue genome to construct a multi-epitope based subunit vaccine by utilizing immunoinformatics approach to battle against dengue infection. Scientific Reports, 7(1), 9232. https://doi.org/10.1038/s41598-017-09199-w
  • Amanna, I. J., & Slifka, M. K. (2011). Contributions of humoral and cellular immunity to vaccine-induced protection in humans. Virology, 411(2), 206–215. https://doi.org/10.1016/j.virol.2010.12.016
  • Anuracpreeda, P., Chawengkirtikul, R., Tinikul, Y., Poljaroen, J., Chotwiwatthanakun, C., & Sobhon, P. (2013). Diagnosis of Fasciola gigantica infection using a monoclonal antibody-based sandwich ELISA for detection of circulating cathepsin B3 protease. Acta Tropica, 127(1), 38–45. https://doi.org/10.1016/j.actatropica.2013.03.020
  • Barh, D., Barve, N., Gupta, K., Chandra, S., Jain, N., Tiwari, S., Leon-Sicairos, N., Canizalez-Roman, A., dos Santos, A. R., Hassan, S. S., Almeida, S., Ramos, R. T. J., de Abreu, V. A. C., Carneiro, A. R., Soares, S. d C., Castro, T. L. d P., Miyoshi, A., Silva, A., Kumar, A., … Azevedo, V. (2013). Exoproteome and secretome derived broad spectrum novel drug and vaccine candidates in Vibrio cholerae targeted by Piper betel derived compounds. PloS One, 8(1), e52773. https://doi.org/10.1371/journal.pone.0052773
  • Cid, R., & Bolívar, J. (2021). Platforms for production of protein-based vaccines: From classical to next-generation strategies. Biomolecules, 11(8), 1072. https://doi.org/10.3390/biom11081072
  • Desta, I. T., Porter, K. A., Xia, B., Kozakov, D., & Vajda, S. (2020). Performance and its limits in rigid body protein-protein docking. Structure (London, England: 1993), 28(9), 1071–1081. e3. https://doi.org/10.1016/j.str.2020.06.006
  • Dimitrov, I., Bangov, I., Flower, D. R., & Doytchinova, I. (2014). AllerTOP v. 2—A server for in silico prediction of allergens. Journal of Molecular Modeling, 20(6), 2278. https://doi.org/10.1007/s00894-014-2278-5
  • Doytchinova, I. A., & Flower, D. R. (2007). VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics, 8(1), 1–7. https://doi.org/10.1186/1471-2105-8-4
  • EL‐Manzalawy, Y., Dobbs, D., & Honavar, V. (2008). Predicting linear B‐cell epitopes using string kernels. Journal of Molecular Recognition: JMR, 21(4), 243–255. https://doi.org/10.1002/jmr.893
  • Englmeier, L. (2020). A theory on SARS-COV-2 susceptibility: Reduced TLR7-activity as a mechanistic link between men, obese and elderly. Journal of Biological Regulators and Homeostatic Agents, 34(3), 1125–1129.
  • Garnier, J. (1998). GOR secondary structure prediction method version IV. Meth Enzym, RF Doolittle Ed, 266, 540–553.
  • Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M., Appel, R., et al. (2005). In John M. Walker (Ed), The proteomics protocols handbook. Humana Press.
  • Gasteiger, E., Hoogland, C., Gattiker, A., Wilkins, M. R., Appel, R. D., & Bairoch, A. (2005). Protein identification and analysis tools on the ExPASy server. The Proteomics Protocols Handbook, 571–607.
  • Gellatly, S. L., & Hancock, R. E. (2013). Pseudomonas aeruginosa: New insights into pathogenesis and host defenses. Pathogens and Disease, 67(3), 159–173. https://doi.org/10.1111/2049-632X.12033
  • Ginsburg, A. S., & Klugman, K. P. (2017). Vaccination to reduce antimicrobial resistance. The Lancet. Global Health, 5(12), e1176–e7. https://doi.org/10.1016/S2214-109X(17)30364-9
  • Hauser, A. R. (2009). The type III secretion system of Pseudomonas aeruginosa: Infection by injection. Nature Reviews. Microbiology, 7(9), 654–665. https://doi.org/10.1038/nrmicro2199
  • Killough, M., Rodgers, A. M., & Ingram, R. J. (2022). Pseudomonas aeruginosa: Recent advances in vaccine development. Vaccines, 10(7), 1100. https://doi.org/10.3390/vaccines10071100
  • Klockgether, J., Cramer, N., Wiehlmann, L., Davenport, C. F., & Tümmler, B. (2011). Pseudomonas aeruginosa genomic structure and diversity. Frontiers in Microbiology, 2, 150. https://doi.org/10.3389/fmicb.2011.00150
  • Krieger, E., Joo, K., Lee, J., Lee, J., Raman, S., Thompson, J., Tyka, M., Baker, D., & Karplus, K. (2009). Improving physical realism, stereochemistry, and side‐chain accuracy in homology modeling: Four approaches that performed well in CASP8. Proteins, 77 (Suppl 9), 114–122. https://doi.org/10.1002/prot.22570
  • Laskowski, R. A., Hutchinson, E. G., Michie, A. D., Wallace, A. C., Jones, M. L., & Thornton, J. M. (1997). PDBsum: A web-based database of summaries and analyses of all PDB structures. Trends in Biochemical Sciences, 22(12), 488–490. https://doi.org/10.1016/s0968-0004(97)01140-7
  • Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26(2), 283–291. https://doi.org/10.1107/S0021889892009944
  • Liao, C., Huang, X., Wang, Q., Yao, D., & Lu, W. (2022). Virulence factors of Pseudomonas aeruginosa and antivirulence strategies to combat its drug resistance. Frontiers in Cellular and Infection Microbiology, 12, 926758. https://doi.org/10.3389/fcimb.2022.926758
  • Moser, C., Jensen, P. Ø., Thomsen, K., Kolpen, M., Rybtke, M., Lauland, A. S., Trøstrup, H., & Tolker-Nielsen, T. (2021). Immune responses to Pseudomonas aeruginosa biofilm infections. Frontiers in Immunology, 12, 625597. https://doi.org/10.3389/fimmu.2021.625597
  • Moxon, R., Reche, P. A., & Rappuoli, R. (2019). Reverse vaccinology. Frontiers Media SA, 10, 2776.
  • Newman, J. W., Floyd, R. V., & Fothergill, J. L. (2017). The contribution of Pseudomonas aeruginosa virulence factors and host factors in the establishment of urinary tract infections. FEMS Microbiology Letters, 364(15), 1–11. https://doi.org/10.1093/femsle/fnx124
  • Nezafat, N., Ghasemi, Y., Javadi, G., Khoshnoud, M. J., & Omidinia, E. (2014). A novel multi-epitope peptide vaccine against cancer: An in silico approach. Journal of Theoretical Biology, 349, 121–134. https://doi.org/10.1016/j.jtbi.2014.01.018
  • Pachori, P., Gothalwal, R., & Gandhi, P. (2019). Emergence of antibiotic resistance Pseudomonas aeruginosa in intensive care unit; a critical review. Genes & Diseases, 6(2), 109–119. https://doi.org/10.1016/j.gendis.2019.04.001
  • Pang, Z., Raudonis, R., Glick, B. R., Lin, T.-J., & Cheng, Z. (2019). Antibiotic resistance in Pseudomonas aeruginosa: Mechanisms and alternative therapeutic strategies. Biotechnology Advances, 37(1), 177–192. https://doi.org/10.1016/j.biotechadv.2018.11.013
  • Ponomarenko, J., Bui, H.-H., Li, W., Fusseder, N., Bourne, P. E., Sette, A., & Peters, B. (2008). ElliPro: A new structure-based tool for the prediction of antibody epitopes. BMC Bioinformatics, 9(1), 514. https://doi.org/10.1186/1471-2105-9-514
  • Rapin, N., Lund, O., Bernaschi, M., & Castiglione, F. (2010). Computational immunology meets bioinformatics: The use of prediction tools for molecular binding in the simulation of the immune system. PloS One, 5(4), e9862. https://doi.org/10.1371/journal.pone.0009862
  • Rashid, M. I., Naz, A., Ali, A., & Andleeb, S. (2017). Prediction of vaccine candidates against Pseudomonas aeruginosa: An integrated genomics and proteomics approach. Genomics, 109(3–4), 274–283. https://doi.org/10.1016/j.ygeno.2017.05.001
  • Rawat, S., & Prasad, B. (2015). Prevalence and characterization of virulence properties of Pseudomonas aeruginosa from clinical samples and hospital environment in dehradun. International Journal of Biological&Pharmaceutical Research, 6, 491–499.
  • Ru, Z., Yu, M., Zhu, Y., Chen, Z., Zhang, F., Zhang, Z., & Ding, J. (2022). Immmunoinformatics‐based design of a multi‐epitope vaccine with CTLA‐4 extracellular domain to combat Helicobacter pylori. FASEB Journal: official Publication of the Federation of American Societies for Experimental Biology, 36(4), e22252. https://doi.org/10.1096/fj.202101538RR
  • Saha, S., & Raghava, G. P. S. (2006). Prediction of continuous B‐cell epitopes in an antigen using recurrent neural network. Proteins, 65(1), 40–48. https://doi.org/10.1002/prot.21078
  • Sainz-Mejías, M., Jurado-Martín, I., & McClean, S. (2020). Understanding Pseudomonas aeruginosa–host interactions: The ongoing quest for an efficacious vaccine. Cells, 9(12), 2617. https://doi.org/10.3390/cells9122617
  • Shahab, M., Hayat, C., Sikandar, R., Zheng, G., & Akter, S. (2022). In silico designing of a multi-epitope vaccine against Burkholderia pseudomallei: Reverse vaccinology and immunoinformatics. Journal of Genetic Engineering and Biotechnology, 20(1), 1–12. https://doi.org/10.1186/s43141-022-00379-4
  • Sharma, A., Krause, A., & Worgall, S. (2011). Recent developments for Pseudomonas vaccines. Human Vaccines, 7(10), 999–1011. https://doi.org/10.4161/hv.7.10.16369
  • Sharma, R., Rajput, V. S., Jamal, S., Grover, A., & Grover, S. (2021). An immunoinformatics approach to design a multi-epitope vaccine against Mycobacterium tuberculosis exploiting secreted exosome proteins. Scientific Reports, 11(1), 1–12.
  • Solanki, V., Tiwari, M., & Tiwari, V. (2019). Prioritization of potential vaccine targets using comparative proteomics and designing of the chimeric multi-epitope vaccine against Pseudomonas aeruginosa. Scientific Reports, 9(1), 5240. https://doi.org/10.1038/s41598-019-41496-4
  • Tahir Ul Qamar, M., Rehman, A., Tusleem, K., Ashfaq, U. A., Qasim, M., Zhu, X., Fatima, I., Shahid, F., & Chen, L.-L. (2020). Designing of a next generation multiepitope based vaccine (MEV) against SARS-COV-2: Immunoinformatics and in silico approaches. PloS One, 15(12), e0244176. https://doi.org/10.1371/journal.pone.0244176
  • Walker, J. M. (2005). The proteomics protocols handbook. Springer.
  • Waqas, M., Haider, A., Sufyan, M., Siraj, S., & Sehgal, S. A. (2020). Determine the potential epitope based peptide vaccine against novel SARS-CoV-2 targeting structural proteins using immunoinformatics approaches. Frontiers in Molecular Biosciences, 7, 227. https://doi.org/10.3389/fmolb.2020.00227
  • Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 35(Web Server issue), W407–W410. https://doi.org/10.1093/nar/gkm290
  • Xue, L. C., Rodrigues, J. P., Kastritis, P. L., Bonvin, A. M., & Vangone, A. (2016). PRODIGY: A web server for predicting the binding affinity of protein–protein complexes. Bioinformatics (Oxford, England), 32(23), 3676–3678. https://doi.org/10.1093/bioinformatics/btw514

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.