568
Views
25
CrossRef citations to date
0
Altmetric
Research Articles

Novel beta-lactam substituted benzenesulfonamides: in vitro enzyme inhibition, cytotoxic activity and in silico interactions

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 6359-6377 | Received 27 Jan 2023, Accepted 01 Jul 2023, Published online: 04 Aug 2023

References

  • Aggarwal, M., Boone, C. D., Kondeti, B., & McKenna, R. (2013). Structural annotation of human carbonic anhydrases. Journal of Enzyme İnhibition and Medicinal Chemistry, 28(2), 267–277. https://doi.org/10.3109/14756366.2012.737323
  • Alım, Z., Tunç, T., Demirel, N., Günel, A., & Karacan, N. (2022). Synthesis of benzimidazole derivatives containing amide bond and biological evaluation as acetylcholinesterase, carbonic anhydrase I and II inhibitors. Journal of Molecular Structure, 1268, 133647. https://doi.org/10.1016/j.molstruc.2022.133647
  • Alqahtani, A. S., Ghorab, M. M., Nasr, F. A., Ahmed, M. Z., Al-Mishari, A. A., & Attia, S. M. (2022). Novel sulphonamide-bearing methoxyquinazolinone derivatives as anticancer and apoptosis inducers: Synthesis, biological evaluation and in silico studies. Journal of Enzyme İnhibition and Medicinal Chemistry, 37(1), 86–99. https://doi.org/10.1080/14756366.2021.1983807
  • Alterio, V., Di Fiore, A., D'Ambrosio, K., Supuran, C. T., & De Simone, G. (2012). Multiple binding modes of ınhibitors to carbonic anhydrases: How to design specific drugs targeting 15 different ısoforms? Chemical Reviews, 112(8), 4421–4468. https://doi.org/10.1021/cr200176r
  • Arya, N., Dwivedi, J., Khedkar, V. M., Coutinho, E. C., & Jain, K. S. (2013). Design, synthesis and biological evaluation of some 2-azetidinone derivatives as potential antihyperlipidemic agents. Archiv der Pharmazie, 346(12), 872–881. https://doi.org/10.1002/ardp.201300262
  • Askin, S., Tahtaci, H., Türkeş, C., Demir, Y., Ece, A., Çiftçi, G. A., & Beydemir, Ş. (2021). Design, synthesis, characterization, in vitro and in silico evaluation of novel imidazo [2, 1-b][1, 3, 4] thiadiazoles as highly potent acetylcholinesterase and non-classical carbonic anhydrase inhibitors, Bioorg. Bioorganic Chemistry, 113, 105009. https://doi.org/10.1016/j.bioorg.2021.105009
  • Atmaca, U., Aksoy, M., & Öztekin, A. (2022). A safe alternative synthesis of primary carbamates from alcohols; in vitro and in silico assessments as an alternative acetylcholinesterase inhibitors. Journal of Biomolecular Structure & Dynamics, 1–10. https://doi.org/10.1080/07391102.2022.2134209
  • Barreiro, G., Guimarães, C. R. W., Tubert-Brohman, I., Lyons, T. M., Tirado-Rives, J., & Jorgensen, W. L. (2007). Search for non-nucleoside ınhibitors of HIV-1 reverse transcriptase using chemical similarity, molecular docking, and MM-GB/SA scoring. Journal of Chemical İnformation and Modeling, 47(6), 2416–2428. https://doi.org/10.1021/ci700271z
  • Bekku, S., Mochizuki, H., Yamamoto, T., Ueno, H., Takayama, E., & Tadakuma, T. (2000). Expression of carbonic anhydrase I or II and correlation to clinical aspects of colorectal cancer. Hepato-gastroenterology, 47(34), 998–1001.
  • Bonardi, A., Nocentini, A., Bua, S., Combs, J., Lomelino, C., Andring, J., Lucarini, L., Sgambellone, S., Masini, E., McKenna, R., Gratteri, P., & Supuran, C. T. (2020). Sulfonamide ınhibitors of human carbonic anhydrases designed through a three-tails approach: Improving ligand/ısoform matching and selectivity of action. Journal of Medicinal Chemistry, 63(13), 7422–7444. https://doi.org/10.1021/acs.jmedchem.0c00733
  • Bowers, K. J., Chow, E., Xu, H., Dror, R. O., Eastwood, M. P., Gregersen, B. A., Klepeis, J. L., Kolossvary, I., Moraes, M. A., & Sacerdoti, F. D. (2006). Scalable algorithms for molecular dynamics simulations on commodity clusters [Paper presentation]. Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, pp. 84-es. https://doi.org/10.1145/1188455.1188544
  • Bozdag, M., Ferraroni, M., Nuti, E., Vullo, D., Rossello, A., Carta, F., Scozzafava, A., & Supuran, C. T. (2014). Combining the tail and the ring approaches for obtaining potent and isoform-selective carbonic anhydrase inhibitors: Solution and X-ray crystallographic studies. Bioorganic & Medicinal Chemistry, 22(1), 334–340. https://doi.org/10.1016/j.bmc.2013.11.016
  • Brandi, A., Cicchi, S., & Cordero, F. M. (2008). Novel syntheses of azetidines and azetidinones. Chemical Reviews, 108(9), 3988–4035. https://doi.org/10.1021/cr800325e
  • Buza, A., Türkeş, C., Arslan, M., Demir, Y., Dincer, B., Nixha, A. R., & Beydemir, Ş. (2023). Discovery of novel benzenesulfonamides incorporating 1,2,3-triazole scaffold as carbonic anhydrase I, II, IX, and XII inhibitors. International Journal of Biological Macromolecules, 239, 124232. https://doi.org/10.1016/j.ijbiomac.2023.124232
  • Carosso, S., & Miller, M. J. (2015). Syntheses and studies of new forms of N-sulfonyloxy β-lactams as potential antibacterial agents and β-lactamase inhibitors. Bioorganic & Medicinal Chemistry, 23(18), 6138–6147. https://doi.org/10.1016/j.bmc.2015.08.005
  • Carta, F., Aggarwal, M., Maresca, A., Scozzafava, A., McKenna, R., Masini, E., & Supuran, C. T. (2012). Dithiocarbamates strongly ınhibit carbonic anhydrases and show antiglaucoma action in vivo. Journal of Medicinal Chemistry, 55(4), 1721–1730. https://doi.org/10.1021/jm300031j
  • Chakravarty, S., & Kannan, K. K. (1994). Drug-protein ınteractions: Refined structures of three sulfonamide drug complexes of human carbonic anhydrase I enzyme. Journal of Molecular Biology, 243(2), 298–309. https://doi.org/10.1006/jmbi.1994.1655
  • Cheung, J., Rudolph, M. J., Burshteyn, F., Cassidy, M. S., Gary, E. N., Love, J., Franklin, M. C., & Height, J. J. (2012). Structures of human acetylcholinesterase in complex with pharmacologically ımportant ligands. Journal of Medicinal Chemistry, 55(22), 10282–10286. https://doi.org/10.1021/jm300871x
  • Daryadel, S., Atmaca, U., Taslimi, P., Gülçin, İ., & Çelik, M. (2018). Novel sulfamate derivatives of menthol: Synthesis, characterization, and cholinesterases and carbonic anhydrase enzymes inhibition properties. Archiv Der Pharmazie, 351(11), 1800209. https://doi.org/10.1002/ardp.201800209
  • Demir, Y., Türkeş, C., Çavuş, M. S., Erdog˘an, M., Mug˘lu, H., Yakan, H., & Beydemir, S. (2023). Enzyme inhibition, molecular docking, and DFT studies of new thiosemicarbazones incorporating 4-hydroxy-3,5- dimethoxy benzaldehyde motif. Archiv der Pharmazie (Weinheim, Ger.), 356(4), 202200554. https://doi.org/10.1002/ardp.202200554
  • Duffy, E. M., & Jorgensen, W. L. (2000). Prediction of properties from simulations: Free energies of solvation in hexadecane, octanol, and water. Journal of the American Chemical Society, 122(12), 2878–2888. https://doi.org/10.1021/ja993663t
  • Ece, A. (2020). Towards more effective acetylcholinesterase inhibitors: A comprehensive modelling study based on human acetylcholinesterase protein–drug complex. Journal of Biomolecular Structure & Dynamics, 38(2), 565–572. https://doi.org/10.1080/07391102.2019.1583606
  • Elbadawi, M. M., Eldehna, W. M., Nocentini, A., Abo-Ashour, M. F., Elkaeed, E. B., Abdelgawad, M. A., Alharbi, K. S., Abdel-Aziz, H. A., Supuran, C. T., Gratteri, P., & Al-Sanea, M. M. (2021). Identification of N-phenyl-2-(phenylsulfonyl)acetamides/propanamides as new SLC-0111 analogues: Synthesis and evaluation of the carbonic anhydrase inhibitory activities. European Journal of Medicinal Chemistry, 218, 113360. https://doi.org/10.1016/j.ejmech.2021.113360
  • Elbadawi, M. M., Eldehna, W. M., Nocentini, A., Somaa, W. R., Al-Rashood, S. T., Elkaeed, E. B., El Hassab, M. A., Abdel-Aziz, H. A., Supuran, C. T., & Fares, M. (2022). Development of 4-((3-oxo-3-phenylpropyl)amino)benzenesulfonamide derivatives utilizing tail/dual-tail approaches as novel carbonic anhydrase inhibitors. European Journal of Medicinal Chemistry, 238, 114412. https://doi.org/10.1016/j.ejmech.2022.114412
  • Eldeeb, A. H., Abo-Ashour, M. F., Angeli, A., Bonardi, A., Lasheen, D. S., Elrazaz, E. Z., Nocentini, A., Gratteri, P., Abdel-Aziz, H. A., & Supuran, C. T. (2021). Novel benzenesulfonamides aryl and arylsulfone conjugates adopting tail/dual tail approaches: Synthesis, carbonic anhydrase inhibitory activity and molecular modeling studies. European Journal of Medicinal Chemistry, 221, 113486. https://doi.org/10.1016/j.ejmech.2021.113486
  • Ellman, G. L., Courtney, K. D., Andres, V., & Feather-Stone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7(2), 88–95. 5, https://doi.org/10.1016/0006-2952(61)90145-9
  • Fisher, S. Z., Maupin, C. M., Budayova-Spano, M., Govindasamy, L., Tu, C., Agbandje-McKenna, M., Silverman, D. N., Voth, G. A., & McKenna, R. (2007). Atomic crystal and molecular dynamics simulation structures of human carbonic anhydrase II: Insights into the proton transfer mechanism. Biochemistry, 46(11), 2930–2937. https://doi.org/10.1021/bi062066y
  • Friesner, R. A., Banks, J. L., Murphy, R. B., Halgren, T. A., Klicic, J. J., Mainz, D. T., Repasky, M. P., Knoll, E. H., Shelley, M., Perry, J. K., Shaw, D. E., Francis, P., & Shenkin, P. S. (2004). Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. Journal of Medicinal Chemistry, 47(7), 1739–1749. https://doi.org/10.1021/jm0306430
  • Gök, N., Akıncıoğlu, A., Erümit Binici, E., Akıncıoğlu, H., Kılınç, N., & Göksu, S. (2021). Synthesis of novel sulfonamides with anti-Alzheimer and antioxidant capacities. Archiv der Pharmazie, 354(7), 2000496. https://doi.org/10.1002/ardp.202000496
  • Güleç, Ö., Türkeş, C., Arslan, M., Demir, Y., Yeni, Y., Hacımüftüoğlu, A., Ereminsoy, E., Küfrevioğlu, Ö. İ., & Beydemir, Ş. (2022). Cytotoxic effect, enzyme inhibition, and in silico studies of some novel N-substituted sulfonyl amides incorporating 1,3,4-oxadiazol structural motif. Molecular Diversity, 26(5), 2825–2845. https://doi.org/10.1007/s11030-022-10422-8
  • Güller, P., Dağalan, Z., Güller, U., Çalışır, U., & Nişancı, B. (2021). Enzymes inhibition profiles and antibacterial activities of benzylidenemalononitrile derivatives. Journal of Molecular Structure. 1239, 130498. https://doi.org/10.1016/j.molstruc.2021.130498
  • Güngör, S. A., Köse, M., Tümer, M., Türkeş, C., & Beydemir, Ş. (2022). Synthesis, characterization and docking studies of benzenesulfonamide derivatives containing 1,2,3-triazole as potential ınhibitor of carbonic anhydrase I-II enzymes. Journal of Biomolecular Structure & Dynamics, 1–11. https://doi.org/10.1080/07391102.2022.2159531
  • Halgren, T. A. (2009). Identifying and characterizing binding sites and assessing druggability. Journal of Chemical İnformation and Modeling, 49(2), 377–389. https://doi.org/10.1021/ci800324m
  • Halgren, T. A., Murphy, R. B., Friesner, R. A., Beard, H. S., Frye, L. L., Pollard, W. T., & Banks, J. L. (2004). Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. Journal of Medicinal Chemistry, 47(7), 1750–1759. https://doi.org/10.1021/jm030644s
  • Kakakhan, C., Türkeş, C., Güleç, Ö., Demir, Y., Arslan, M., Özkemahlı, G., & Beydemir, Ş. (2023). Exploration of 1,2,3-triazole linked benzenesulfonamide derivatives as isoform selective inhibitors of human carbonic anhydrase. Bioorganic & Medicinal Chemistry, 77, 117111. https://doi.org/10.1016/j.bmc.2022.117111
  • Karakılıç, E., Alım, Z., Günel, A., & Baran, A. (2022). A versatile study of novel A3B-type unsymmetric zinc(II) phthalocyanines containing thiazolidin-4-one: Their, carbonic anhydrase I, II isoenzymes, and xanthine oxidase inhibitors evaluation. Journal of Molecular Structure, 1257, 132630. https://doi.org/10.1016/j.molstruc.2022.132630
  • Kılıcaslan, S., Arslan, M., Ruya, Z., Bilen, Ç., Ergün, A., Gençer, N., & Arslan, O. (2016). Synthesis and evaluation of sulfonamide-bearing thiazole as carbonic anhydrase isoforms hCA I and hCA II. Journal of Enzyme İnhibition and Medicinal Chemistry, 31(6), 1300–1305. https://doi.org/10.3109/14756366.2015.1128426
  • Kim, J.-H., Cho, S. Y., Lee, J.-H., Jeong, S. M., Yoon, I.-S., Lee, B.-H., Lee, J.-H., Pyo, M. K., Lee, S.-M., Chung, J.-M., Kim, S., Rhim, H., Oh, J.-W., & Nah, S.-Y. (2007). Neuroprotective effects of ginsenoside Rg3 against homocysteine-induced excitotoxicity in rat hippocampus. Brain Research, 1136(1), 190–199. https://doi.org/10.1016/j.brainres.2006.12.047
  • Kumar, A., Siwach, K., Supuran, C. T., & Sharma, P. K. (2022). A decade of tail-approach based design of selective as well as potent tumor associated carbonic anhydrase inhibitors. Bioorganic Chemistry, 126, 105920. https://doi.org/10.1016/j.bioorg.2022.105920
  • Kumar, K., Singh, P., Kremer, L., Guérardel, Y., Biot, C., & Kumar, V. (2012). Synthesis and in vitro anti-tubercular evaluation of 1,2,3-triazole tethered β-lactam–ferrocene and β-lactam–ferrocenylchalcone chimeric scaffolds. Dalton Transactions (Cambridge, England: 2003), 41(19), 5778–5781. https://doi.org/10.1039/C2DT30514C
  • Kuskovsky, R., Lloyd, D., Arora, K., Plotkin, B. J., Green, J. M., Boshoff, H. I., Barry, C., Deschamps, J., & Konaklieva, M. I. (2019). C4-Phenylthio β-lactams: Effect of the chirality of the β-lactam ring on antimicrobial activity. Bioorganic & Medicinal Chemistry, 27(20), 115050. https://doi.org/10.1016/j.bmc.2019.115050
  • Lankat-Buttgereit, B., Gregel, C., Knolle, A., Hasilik, A., Arnold, R., & Göke, R. (2004). Pdcd4 inhibits growth of tumor cells by suppression of carbonic anhydrase type II. Molecular and Cellular Endocrinology, 214(1-2), 149–153. https://doi.org/10.1016/j.mce.2003.10.058
  • Leitans, J., Kazaks, A., Balode, A., Ivanova, J., Zalubovskis, R., Supuran, C. T., & Tars, K. (2015). Efficient expression and crystallization system of cancer-associated carbonic anhydrase ısoform IX. Journal of Medicinal Chemistry, 58(22), 9004–9009. https://doi.org/10.1021/acs.jmedchem.5b01343
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (1997). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews. 23(1-3), 3–25. https://doi.org/10.1016/S0169-409X(96)00423-1
  • Lolak, N., Akocak, S., Durgun, M., Duran, H. E., Necip, A., Türkeş, C., Işık, M., & Beydemir, Ş. (2022). Novel bis-ureido-substituted sulfaguanidines and sulfisoxazoles as carbonic anhydrase and acetylcholinesterase inhibitors. Molecular Diversity. https://doi.org/10.1007/s11030-022-10527-0
  • Long, X-k., Liao, L.-Q., Zeng, Y.-F., Zhang, Y., Xiao, F., Li, C., & Guo, Y. (2019). Synthesis and biological evaluation of novel genistein amino acid ester derivatives as potential anti-tumor agents. ChemistrySelect, 4(19), 5662–5666. https://doi.org/10.1002/slct.201900857
  • Madhavi Sastry, G., Adzhigirey, M., Day, T., Annabhimoju, R., & Sherman, W. (2013). Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. Journal of Computer-Aided Molecular Design, 27(3), 221–234. https://doi.org/10.1007/s10822-013-9644-8
  • Malebari, A. M., Fayne, D., Nathwani, S. M., O'Connell, F., Noorani, S., Twamley, B., O'Boyle, N. M., O'Sullivan, J., Zisterer, D. M., & Meegan, M. J. (2020). β-Lactams with antiproliferative and antiapoptotic activity in breast and chemoresistant colon cancer cells. European Journal of Medicinal Chemistry, 189(2020), 112050. https://doi.org/10.1016/j.ejmech.2020.112050
  • Mehta, P. D., Sengar, N. P. S., & Pathak, A. K. (2010). 2-Azetidinone – A new profile of various pharmacological activities. European Journal of Medicinal Chemistry, 45(12), 5541–5560. https://doi.org/10.1016/j.ejmech.2010.09.035
  • Michaelis, L., Menten, M. L., Johnson, K. A., & Goody, R. S. (2011). The Original Michaelis Constant: Translation of the 1913 Michaelis–Menten Paper. Biochemistry, 50(39), 8264–8269. https://doi.org/10.1021/bi201284u
  • Mishra, C. B., Kumari, S., Angeli, A., Bua, S., Mongre, R. K., Tiwari, M., & Supuran, C. T. (2021). Discovery of potent carbonic anhydrase ınhibitors as effective anticonvulsant agents: Drug design, synthesis, and ın vitro and ın vivo ınvestigations. Journal of Medicinal Chemistry, 64(6), 3100–3114. https://doi.org/10.1021/acs.jmedchem.0c01889
  • Mishra, C. B., Kumari, S., Angeli, A., Monti, S. M., Buonanno, M., Tiwari, M., & Supuran, C. T. (2017). Discovery of benzenesulfonamides with potent human carbonic anhydrase ınhibitory and effective anticonvulsant action: Design, synthesis, and pharmacological assessment. Journal of Medicinal Chemistry, 60(6), 2456–2469. https://doi.org/10.1021/acs.jmedchem.6b01804
  • Mishra, C. B., Tiwari, M., & Supuran, C. T. (2020). Progress in the development of human carbonic anhydrase inhibitors and their pharmacological applications: Where are we today? Medicinal Research Reviews, 40(6), 2485–2565. https://doi.org/10.1002/med.21713
  • Nocentini, A., & Supuran, C. T. (2019). Advances in the structural annotation of human carbonic anhydrases and impact on future drug discovery. Expert Opinion on Drug Discovery, 14(11), 1175–1197. https://doi.org/10.1080/17460441.2019.1651289
  • Osazee, J. O. (2016). Molecular docking, synthesis and evaluation of pyrrolo [2, 1-c][1, 4] benzodiazepines derivatives as non-β-lactam β-lactamases ınhibitors. East Tennessee State University.
  • Osmaniye, D., Türkeş, C., Demir, Y., Özkay, Y., Beydemir, Ş., & Kaplancıklı, Z. A. (2022). Design, synthesis, and biological activity of novel dithiocarbamate-methylsulfonyl hybrides as carbonic anhydrase inhibitors. Archiv der Pharmazie, 355(8), e2200132. https://doi.org/10.1002/ardp.202200132
  • Ozer, E. B., Caglayan, C., & Bayindir, S. (2022). The solvent-controlled regioselective synthesis of 3-amino-5-aryl-rhodanines as novel inhibitors of human carbonic anhydrase enzymes. Tetrahedron, 120, 132896. https://doi.org/10.1016/j.tet.2022.132896
  • Page, M. I. (1987). The mechanisms of reactions of β-lactam antibiotics. In: D. Bethell (Ed.), Advances in physical organic chemistry (pp. 165–270). Academic Press.
  • Parkkila, S., Lasota, J., Fletcher, J. A., Ou, W-b., Kivelä, A. J., Nuorva, K., Parkkila, A.-K., Ollikainen, J., Sly, W. S., Waheed, A., Pastorekova, S., Pastorek, J., Isola, J., & Miettinen, M. (2010). Carbonic anhydrase II. A novel biomarker for gastrointestinal stromal tumors. Modern Pathology : An Official Journal of the United States and Canadian Academy of Pathology, Inc, 23(5), 743–750. https://doi.org/10.1038/modpathol.2009.189
  • Pasaribu, Y. P., Fadlan, A., Fatmawati, S., & Ersam, T. (2021). Biological activity evaluation and ın silico studies of polyprenylated benzophenones from Garcinia celebica. Biomed, 9(11), 1654. https://doi.org/10.3390/biomedicines9111654
  • Rad, J. A., Jarrahpour, A., Latour, C., Sinou, V., Brunel, J. M., Zgou, H., Mabkhot, Y., Hadda, T. B., & Turos, E. (2017). Synthesis and antimicrobial/antimalarial activities of novel naphthalimido trans-β-lactam derivatives. Medicinal Chemistry Research, 26(10), 2235–2242. https://doi.org/10.1007/s00044-017-1920-z
  • Ramírez Granillo, A., Canales, M. G. M., Espíndola, M. E. S., Martínez Rivera, M. A., de Lucio, V. M. B., & Tovar, A. V. R. (2015). Antibiosis interaction of Staphylococccus aureus on Aspergillus fumigatus assessed in vitro by mixed biofilm formation. BMC Microbiology, 15(1), 33. https://doi.org/10.1186/s12866-015-0363-2
  • Sahoo, B. M., & Banik, B. K. (2020). Therapeutic potentials of β-lactam. In Synthetic approaches to nonaromatic nitrogen heterocycles (pp. 59–88). Wiley.
  • Saturnino, C., Fusco, B., Saturnino, P., Martino, G. D. E., Rocco, F., & Lancelot, J.-C. (2000). Evaluation of analgesic and anti-inflammatory activity of novel β-lactam monocyclic compounds. Biological & Pharmaceutical Bulletin, 23(5), 654–656. https://doi.org/10.1248/bpb.23.654
  • Schrödinger release 2023-1: Desmond. (2023). Schrödinger, LLC.
  • Schrödinger release 2023-1: Epik. (2023). Schrödinger, LLC.
  • Schrödinger release 2023-1: Glide. (2023). Schrödinger, LLC.
  • Schrödinger release 2023-1: LigPrep. (2023). Schrödinger, LLC.
  • Schrödinger release 2023-1: Prime. (2023). Schrödinger, LLC.
  • Schrödinger release 2023-1: Protein preparation wizard. (2023). Schrödinger, LLC.
  • Schrödinger release 2023-1: QikProp. (2023). Schrödinger, LLC.
  • Schrödinger release 2023-1: Receptor grid generation. (2023). Schrödinger, LLC.
  • Schrödinger release 2023-1: SiteMap. (2023). Schrödinger, LLC.
  • Scozzafava, A., & Supuran, C. T. (2014). Glaucoma and the applications of carbonic anhydrase ınhibitors. In: S.C. Frost & R. McKenna (Eds.), Carbonic anhydrase: Mechanism, regulation, links to disease, and ındustrial applications (pp. 349–359). Springer Netherlands.
  • Sever, B., Türkeş, C., Altıntop, M. D., Demir, Y., Çiftçi, G. A., & Beydemir, Ş. (2021). Novel metabolic enzyme inhibitors designed through the molecular hybridization of thiazole and pyrazoline scaffolds. Archiv Der Pharmazie, 354(12), e2100294. https://doi.org/10.1002/ardp.202100294
  • Shelley, J. C., Cholleti, A., Frye, L. L., Greenwood, J. R., Timlin, M. R., & Uchimaya, M. (2007). Epik: A software program for pKaprediction and protonation state generation for drug-like molecules. Journal of Computer-Aided Molecular Design, 21(12), 681–691. https://doi.org/10.1007/s10822-007-9133-z
  • Singh, G. S. (2004a). β-Lactams in the new millennium. Part-I: Monobactams and carbapenems. Mini - Reviews in Medicinal Chemistry, 4(1), 69–92. https://doi.org/10.2174/1389557043487501
  • Singh, G. S. (2004b). β-lactams in the new millennium. Part-II: Cephems, oxacephems, penams and sulbactam. Mini - Reviews in Medicinal Chemistry, 4(1), 93–109. https://doi.org/10.2174/1389557043487547
  • Singh, H., Vasa, S. K., Jangra, H., Rovó, P., Päslack, C., Das, C. K., Zipse, H., Schäfer, L. V., & Linser, R. (2019). Fast microsecond dynamics of the protein–water network in the active site of human carbonic anhydrase II studied by solid-state NMR spectroscopy. Journal of the American Chemical Society, 141(49), 19276–19288. https://doi.org/10.1021/jacs.9b05311
  • Sippel, K. H., Robbins, A. H., Domsic, J., Genis, C., Agbandje-McKenna, M., & McKenna, R. (2009). High-resolution structure of human carbonic anhydrase II complexed with acetazolamide reveals insights into inhibitor drug design. Acta Crystallographica. Section F, Structural Biology and Crystallization Communications, 65(Pt 10), 992–995. https://doi.org/10.1107/S1744309109036665
  • Sperka, T., Pitlik, J., Bagossi, P., & Tözsér, J. (2005). Beta-lactam compounds as apparently uncompetitive inhibitors of HIV-1 protease. Bioorganic & Medicinal Chemistry Letters, 15(12), 3086–3090. https://doi.org/10.1016/j.bmcl.2005.04.020
  • Supuran, C. T. (2018). Applications of carbonic anhydrases inhibitors in renal and central nervous system diseases. Expert Opinion on Therapeutic Patents, 28(10), 713–721. https://doi.org/10.1080/13543776.2018.1519023
  • Taslimi, P., Türkan, F., Cetin, A., Burhan, H., Karaman, M., Bildirici, I., Gulçin, İ., & Şen, F. (2019). Pyrazole[3,4-d]pyridazine derivatives: Molecular docking and explore of acetylcholinesterase and carbonic anhydrase enzymes inhibitors as anticholinergics potentials, Bioorg. Bioorganic Chemistry, 92, 103213. https://doi.org/10.1016/j.bioorg.2019.103213
  • Tawfik, H. O., Petreni, A., Supuran, C. T., & El-Hamamsy, M. H. (2022). Discovery of new carbonic anhydrase IX inhibitors as anticancer agents by toning the hydrophobic and hydrophilic rims of the active site to encounter the dual-tail approach. European Journal of Medicinal Chemistry, 232, 114190. https://doi.org/10.1016/j.ejmech.2022.114190
  • Topal, F. (2019). Inhibition profiles of voriconazole against acetylcholinesterase, α-glycosidase, and human carbonic anhydrase I and II isoenzymes. Journal of Biochemical and Molecular Toxicology, 33(10), e22385. https://doi.org/10.1002/jbt.22385
  • Türkeş, C., Arslan, M., Demir, Y., Cocaj, L., Nixha, A. R., & Beydemir, Ş. (2019). Synthesis, biological evaluation and in silico studies of novel N-substituted phthalazine sulfonamide compounds as potent carbonic anhydrase and acetylcholinesterase inhibitors, Bioorg. Bioorganic Chemistry, 89, 103004. https://doi.org/10.1016/j.bioorg.2019.103004
  • Türkeş, C., Demir, Y., & Beydemir, Ş. (2021). Calcium channel blockers: molecular docking and ınhibition studies on carbonic anhydrase I and II ısoenzymes. Journal of Biomolecular Structure & Dynamics, 39(5), 1672–1680. https://doi.org/10.1080/07391102.2020.1736631
  • Veinberg, G., Shestakova, I., Vorona, M., Kanepe, I., & Lukevics, E. (2004). Synthesis of antitumor 6-alkylidenepenicillanate sulfones and related 3-alkylidene-2-azetidinones. Bioorganic & Medicinal Chemistry Letters, 14(1), 147–150. https://doi.org/10.1016/j.bmcl.2003.09.078
  • Verpoorte, J. A., Mehta, S., & Edsall, J. T. (1967). Esterase activities of human carbonic anhydrases B and C. Journal of Biological Chemistry, 242(18), 4221–4229. https://doi.org/10.1016/S0021-9258(18)95800-X
  • Vigorita, M. G., Ottanà, R., Monforte, F., Maccari, R., Trovato, A., Monforte, M. T., & Taviano, M. F. (2001). Synthesis and antiinflammatory, analgesic activity of 3,3′-(1,2-Ethanediyl)-bis[2-aryl-4-thiazolidinone] chiral compounds. Part 10. Bioorganic & Medicinal Chemistry Letters, 11(21), 2791–2794. https://doi.org/10.1016/S0960-894X(01)00476-0
  • Wang, S., Bao, L., Song, D., Wang, J., & Cao, X. (2019). Heterocyclic lactam derivatives containing piperonyl moiety as potential antifungal agents. Bioorganic & Medicinal Chemistry Letters, 29(20), 126661. https://doi.org/10.1016/j.bmcl.2019.126661
  • Yakan, H., Muğlu, H., Türkeş, C., Demir, Y., Erdoğan, M., Çavuş, M. S., & Beydemir, Ş. (2023). A novel series of thiosemicarbazone hybrid scaffolds: Design, synthesis, DFT studies, metabolic enzyme inhibition properties, and molecular docking calculations. Journal of Molecular Structure, 1280, 135077. https://doi.org/10.1016/j.molstruc.2023.135077
  • Yapar, G., Duran, H. E., Lolak, N., Akocak, S., Türkeş, C., Durgun, M., Işık, M., & Beydemir, Ş. (2021). Biological effects of bis-hydrazone compounds bearing isovanillin moiety on the aldose reductase. Bioorganic Chemistry, 117, 105473. https://doi.org/10.1016/j.bioorg.2021.105473
  • Yararli, K., Ozer, E. B., Bayindir, S., Caglayan, C., Turkes, C., & Beydemir, S. (2023). The synthesis, biological evaluation and in silico studies of asymmetric 3,5-diaryl-rhodanines as novel inhibitors of human carbonic anhydrase isoenzymes. Journal of Molecular Structure. 1276, 134783. https://doi.org/10.1016/j.molstruc.2022.134783
  • Zhang, X., & Jia, Y. (2020). Recent advances in β-lactam derivatives as potential anticancer agents. Current Topics in Medicinal Chemistry, 20(16), 1468–1480. https://doi.org/10.2174/1568026620666200309161444
  • Zhang, X., Hubbard, C. D., & van Eldik, R. (1996). Carbonic anhydrase catalysis: A volume profile analysis. The Journal of Physical Chemistry, 100(21), 9161–9171. https://doi.org/10.1021/jp9524791

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.