169
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Exploration of human pancreatic alpha-amylase inhibitors from Physalis peruviana for the treatment of type 2 diabetes

, , &
Pages 1031-1046 | Received 27 Jan 2023, Accepted 25 Mar 2023, Published online: 06 Aug 2023

References

  • Alam, S., Hasan, M., Neaz, S., Hussain, N., Hossain, M., & Rahman, T. (2021). Diabetes Mellitus: Insights from epidemiology, biochemistry, risk factors, diagnosis, complications and comprehensive management. Diabetology, 2(2), 36–50. https://doi.org/10.3390/diabetology2020004
  • Al-Ishaq, Abotaleb, Kubatka,., & Kajo, Büsselberg. (2019). Flavonoids and their anti-diabetic effects: Cellular mechanisms and effects to improve blood sugar levels. Biomolecules, 9(9), 430. https://doi.org/10.3390/biom9090430
  • Alqahtani, A.S., Hidayathulla, S., Rehman, M.T., ElGamal, A.A., Al-Massarani, S., Razmovski-Naumovski, V., Alqahtani, M.S., El Dib, R.A. & AlAjmi, M.F. (2019). Alpha-Amylase and Alpha-glucosidase enzyme inhibition and antioxidant potential of 3-oxolupenal and katononic acid isolated from nuxia oppositifolia. Biomolecules, 10(1), 61. https://doi.org/10.3390/biom10010061
  • American Diabetes Association. (2014). Diagnosis and classification of diabetes Mellitus. Diabetes Care, 37(Supplement_1), S81–S90.
  • Bai, L., Li, X., He, L., Zheng, Y., Lu, H., Li, J., Zhong, L., Tong, R., Jiang, Z., Shi, J., & Li, J. (2019). Antidiabetic potential of flavonoids from traditional chinese medicine: A review. The American Journal of Chinese Medicine, 47(5), 933–957. https://doi.org/10.1142/S0192415X19500496
  • Bajrai, L. H., Alharbi, A. S., El-Day, M. M., Bafaraj, A. G., Dwivedi, V. D., & Azhar, E. I. (2022). Identification of antiviral compounds against Monkeypox Virus profilin-like protein A42R from Plantago lanceolata. Molecules, 27(22), 7718. https://doi.org/10.3390/molecules27227718
  • Bajrai, L. H., Faizo, A. A., Alkhaldy, A. A., Dwivedi, V. D., & Azhar, E. I. (2022). Repositioning of anti-dengue compounds against SARS-CoV-2 as viral polyprotein processing inhibitor. PloS One, 17(11), e0277328. https://doi.org/10.1371/journal.pone.0277328
  • Beseni, B. K., Matsebatlela, T. M., Bagla, V. P., Njanje, I., Poopedi, K., Mbazima, V., Mampuru, L., & Mokgotho, M. P. (2019). Potential Antiglycation and Hypoglycaemic Effects of Toona ciliata M. Roem. and Schkuhria pinnata Lam. Thell. Crude extracts in differentiated C2C12 cells. Evidence-Based Complementary and Alternative Medicine, 2019, 5406862. https://doi.org/10.1155/2019/5406862
  • Bharadwaj, S., Dubey, A., Yadava, U., Mishra, S. K., Kang, S. G., & Dwivedi, V. D. (2021). Exploration of natural compounds with anti-SARS-CoV-2 activity via inhibition of SARS-CoV-2 Mpro. Briefings in Bioinformatics, 22(2), 1361–1377. https://doi.org/10.1093/bib/bbaa382
  • Blahova, J., Martiniakova, M., Babikova, M., Kovacova, V., Mondockova, V., & Omelka, R. (2021). Pharmaceutical drugs and natural therapeutic products for the treatment of type 2 diabetes mellitus. Pharmaceuticals, 14(8), 806. https://doi.org/10.3390/ph14080806
  • Bowers, K. J., Chow, E., Xu, H., Dror, R. O., Eastwood, M. P., Gregersen, B. A., Klepeis, J. L., Kolossvary, I., Moraes, M. A., Sacerdoti, F. D., & Salmon, J. K. (2006). Scalable algorithms for molecular dynamics simulations on commodity clusters. In ACM/IEEE SC 2006 Conference (SC’06). IEEE. p. 43–43.
  • Burley, S. K., Berman, H. M., Kleywegt, G. J., Markley, J. L., Nakamura, H., & Velankar, S. (2017). Protein Data Bank (PDB): The single global macromolecular structure archive. Methods in Molecular Biology, 1607, 627–641. https://doi.org/10.1007/978-1-4939-7000-1_26
  • Chatterjee, S., Khunti, K., & Davies, M. J. (2017). Type 2 diabetes. Lancet, 389(10085), 2239–2251. https://doi.org/10.1016/S0140-6736(17)30058-2
  • Chen, X., Zheng, Y., & Shen, Y. (2006). Voglibose (Basen®, AO-128), One of the Most Important α-Glucosidase Inhibitors. Current Medicinal Chemistry, 13(1), 109–116. https://doi.org/10.2174/092986706789803035
  • Chiasson, J. L. (2006 Acarbose for the prevention of diabetes, hypertension, and cardiovascular disease in subjects with impaired glucose tolerance: The study to prevent non-insulin-dependent diabetes Mellitus (Stop-Niddm) trial. Endocrine Practice, 12(Suppl 1), 25–30. https://doi.org/10.4158/EP.12.S1.25
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717. https://doi.org/10.1038/srep42717
  • de Vivo, M., Masetti, M., Bottegoni, G., & Cavalli, A. (2016). Role of molecular dynamics and related methods in drug discovery. Journal of Medicinal Chemistry, 59(9), 4035–4061. https://doi.org/10.1021/acs.jmedchem.5b01684
  • Durrant, J. D., & McCammon, J. A. (2011). Molecular dynamics simulations and drug discovery. BMC Biology, 9(1), 71. https://doi.org/10.1186/1741-7007-9-71
  • Khatabi, K. E., Aanouz, İ., Mernissi, E. L., Khaldan, A., R., Ajana, M. A., Bouachrine, M., & Lakhlifi, T. (2020). Design of Novel Benzimidazole Derivatives as Potential α-amylase Inhibitors by 3D-QSAR Modeling and Molecular Docking Studies. Journal of the Turkish Chemical Society Section A: Chemistry, 7(2), 471–480. https://doi.org/10.18596/jotcsa.703026
  • Fatemeh, A. S., Hosseini, A. S., Askian, R., & Azadbakh, M. (2018). Therapeutic activities and phytochemistry of physalis species based on traditional and modern medicine. Research Journal of Pharmacognosy, 6(4), 79–96. https://doi.org/10.22127/rjp.2019.93529
  • Grant, B. J., Rodrigues, A. P. C., ElSawy, K. M., McCammon, J. A., & Caves, L. S. D. (2006). Bio3d: An R package for the comparative analysis of protein structures. Bioinformatics, 22(21), 2695–2696. https://doi.org/10.1093/bioinformatics/btl461
  • Imran, S., Taha, M., Selvaraj, M., Ismail, N. H., Chigurupati, S., & Mohammad, J. I. (2017). Aug Synthesis and biological evaluation of indole derivatives as α-amylase inhibitor. Bioorganic Chemistry, 73, 121–127. https://doi.org/10.1016/j.bioorg.2017.06.007
  • Jolliffe, I. (2011). Principal component analysis. In International encyclopedia of statistical science ((pp. 1094–1096)). Springer Berlin Heidelberg.
  • Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: A review and recent developments. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 374(2065), 20150202. https://doi.org/10.1098/rsta.2015.0202
  • Kalra, S., Bantwal, G., Kapoor, N., Sahay, R., Bhattacharya, S., Anne, B., Gopal, R. A., Kota, S., Kumar, A., Joshi, A., Sanyal, D., Tiwaskar, M., & Das, A. K. (2021). Quantifying remission probability in type 2 diabetes Mellitus. Clinics and Practice, 11(4), 850–859. https://doi.org/10.3390/clinpract11040100
  • Kasali, F. M., Tusiimire, J., Kadima, J. N., Tolo, C. U., Weisheit, A., & Agaba, A. G. (2021). Ethnotherapeutic uses and phytochemical composition of physalis peruviana L.: An overview. The Scientific World Journal, 2021, 1–22. https://doi.org/10.1155/2021/5212348
  • Kim, S., Thiessen, P. A., Bolton, E. E., Chen, J., Fu, G., Gindulyte, A., Han, L., He, J., He, S., Shoemaker, B. A., Wang, J., Yu, B., Zhang, J., & Bryant, S. H. (2016). PubChem substance and compound databases. Nucleic Acids Research, 44(D1), D1202–13. https://doi.org/10.1093/nar/gkv951
  • Kitao, A. (2022). Principal component analysis and related methods for investigating the dynamics of biological macromolecules. School of Life Science and Technology, 5(2), 298–317. https://doi.org/10.3390/j5020021
  • Kumar, S., Paul, P., Yadav, P., Kaul, R., Maitra, S. S., Jha, S. K., & Chaari, A. (2022). A multi-targeted approach to identify potential flavonoids against three targets in the SARS-CoV-2 life cycle. Computers in Biology and Medicine, 142, 105231. https://doi.org/10.1016/j.compbiomed.2022.105231
  • Laakso, M. (2019). Biomarkers for type 2 diabetes. Molecular Metabolism, 27S(Suppl), S139–S146. https://doi.org/10.1016/j.molmet.2019.06.016
  • Lange, O. F., & Grubmüller, H. (2006). Can principal components yield a dimension reduced description of protein dynamics on long time scales? The Journal of Physical Chemistry, 110(45), 22842–22852. https://doi.org/10.1021/jp062548j
  • Lipinski, C. A. (2004). Lead- and drug-like compounds: The rule-of-five revolution. Drug Discovery Today. Technologies, 1(4), 337–341. https://doi.org/10.1016/j.ddtec.2004.11.007
  • Macarron, R. (2006). Critical review of the role of HTS in drug discovery. Drug Discovery Today, 11(7–8), 277–279. https://doi.org/10.1016/j.drudis.2006.02.001
  • Madhavi Sastry, G., Adzhigirey, M., Day, T., Annabhimoju, R., & Sherman, W. (2013). Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. Journal of Computer-Aided Molecular Design, 27(3), 221–234. https://doi.org/10.1007/s10822-013-9644-8
  • Mohanraj, K., Karthikeyan, B. S., Vivek-Ananth, R. P., Chand, R. P. B., Aparna, S. R., Mangalapandi, P., & Samal, A. (2018). IMPPAT: A curated database of Indian medicinal plants, phytochemistry and therapeutics. Scientific Reports, 8(1), 4329. https://doi.org/10.1038/s41598-018-22631-z
  • Ogunyemi, O. M., Gyebi, A. G., Adebayo, J. O., Oguntola, J. A., & Olaiya, C. O. (2020). Marsectohexol and other pregnane phytochemicals derived from Gongronema latifolium as α-amylase and α-glucosidase inhibitors: In vitro and molecular docking studies. SN Applied Sciences, 2(12), 2119. https://doi.org/10.1007/s42452-020-03951-0
  • Ogunyemi, O. M., Gyebi, G. A., Ibrahim, I. M., Esan, A. M., Olaiya, C. O., Soliman, M. M., & Batiha, G. E.-S. (2023). Identification of promising multi-targeting inhibitors of obesity from Vernonia amygdalina through computational analysis. Molecular Diversity, 27(1), 1–25. https://doi.org/10.1007/s11030-022-10397-6
  • Ogunyemi, O. M., Gyebi, G. A., Ibrahim, I. M., Olaiya, C. O., Ocheje, J. O., Fabusiwa, M. M., & Adebayo, J. O. (2021). Dietary stigmastane-type saponins as promising dual-target directed inhibitors of SARS-CoV-2 proteases: A structure-based screening. RSC Advances, 11(53), 33380–33398. https://doi.org/10.1039/d1ra05976a
  • Papaleo, E., Mereghetti, P., Fantucci, P., Grandori, R., & de Gioia, L. (2009). Free-energy landscape, principal component analysis, and structural clustering to identify representative conformations from molecular dynamics simulations: The myoglobin case. Journal of Molecular Graphics & Modelling, 27(8), 889–899. https://doi.org/10.1016/j.jmgm.2009.01.006
  • Pino-de la Fuente, F., Nocetti, D., Sacristán, C., Ruiz, P., Guerrero, J., Jorquera, G., Uribe, E., Bucarey, J.L., Espinosa, A. & Puente, L. (2020). Physalis peruviana L. Pulp prevents liver inflammation and insulin resistance in skeletal muscles of diet-induced obese mice. Nutrients, 12(3), 700. https://doi.org/10.3390/nu12030700
  • Rahim, F., Zaman, K., Taha, M., Ullah, H., Ghufran, M., Wadood, A., Rehman, W., Uddin, N., Shah, S. A. A., Sajid, M., Nawaz, F., & Khan, K. M. (2020). Synthesis, in vitro alpha-glucosidase inhibitory potential of benzimidazole bearing bis-Schiff bases and their molecular docking study. Bioorganic Chemistry, 94, 103394. https://doi.org/10.1016/j.bioorg.2019.103394
  • Sahakyan, H. (2021). Improving virtual screening results with MM/GBSA and MM/PBSA rescoring. Journal of Computer-Aided Molecular Design, 35(6), 731–736. https://doi.org/10.1007/s10822-021-00389-3
  • Salo-Ahen, O. M. H., Alanko, I., Bhadane, R., Bonvin, A. M. J. J., Honorato, R. V., Hossain, S., Juffer, A. H., Kabedev, A., Lahtela-Kakkonen, M., Larsen, A. S., Lescrinier, E., Marimuthu, P., Mirza, M. U., Mustafa, G., Nunes-Alves, A., Pantsar, T., Saadabadi, A., Singaravelu, K., & Vanmeert, M. (2020). Molecular dynamics simulations in drug discovery and pharmaceutical development. Processes, 9(1), 71. https://doi.org/10.3390/pr9010071
  • Sarian, M. N., Ahmed, Q. U., Mat So’ad, S. Z., Alhassan, A. M., Murugesu, S., Perumal, V., Syed Mohamad, S. N. A., Khatib, A., & Latip, J. (2017). Antioxidant and antidiabetic effects of flavonoids: A structure-activity relationship based study. BioMed Research International, 2017, 8386065. https://doi.org/10.1155/2017/8386065
  • Sayed, A. M., El-Hawary, S. S., Abdelmohsen, U. R., & Ghareeb, M. A. (2022). Antiproliferative potential of Physalis peruviana -derived magnolin against pancreatic cancer: A comprehensive in vitro and in silico study. Food & Function, 13(22), 11733–11743. https://doi.org/10.1039/d2fo01915a
  • Schrödinger. (2018). Schrödinger Release 2018-3: LigPrep. Schrodinger, LLC.
  • Schrödinger Release 2020–4: Desmond. (2020). Schrödinger Release 2020–4: Desmond Molecular Dynamics System. D.E. Shaw Research; Maestro-Desmond Interoperability Tools; Schrödinger.
  • Schrödinger. (2020). Schrödinger Release 2020–4: Prime. Schrödinger Release 2020–4: Prime. Schrödinger, LLC.
  • Shenstone, E., Lippman, Z., & van Eck, J. (2020). A review of nutritional properties and health benefits of Physalis species. Plant Foods for Human Nutrition, 75(3), 316–325. https://doi.org/10.1007/s11130-020-00821-3
  • Singh, N., Singh, Maurya, P., Arya, M., Khan, F., Dwivedi, D. H., & Saraf, S. A. (2019). An updated review on Physalis peruviana fruit: Cultivational, nutraceutical andpharmaceutical aspects. Indian Journal of Natural Products and Resources, 10(2), 97–110.
  • Skjærven, L., Yao, X. Q., Scarabelli, G., & Grant, B. J. (2014). Integrating protein structural dynamics and evolutionary analysis with Bio3D. BMC Bioinformatics, 15(1), 399. https://doi.org/10.1186/s12859-014-0399-6
  • Stiefel, D. J., & Keller, P. J. (1973). Preparation and some properties of human pancreatic amylase including a comparison with human parotid amylase. Biochimica et Biophysica Acta, 302(2), 345–361. https://doi.org/10.1016/0005-2744(73)90163-0
  • Valderrama, I. H., Echeverry, S. M., Rey, D. P., Rodríguez, I. A., Silva, F. R. M. B., Costa, G. M., Ospina-Giraldo, L.F. and Aragón, D.M. (2022). Extract of calyces from Physalis peruviana reduces insulin resistance and oxidative stress in streptozotocin-induced diabetic mice. Pharmaceutics, 14(12), 2758. https://doi.org/10.3390/pharmaceutics14122758
  • van Aalten, D. M., Findlay, J. B., Amadei, A., & Berendsen, H. J. (1995). Essential dynamics of the cellular retinol-binding protein–evidence for ligand-induced conformational changes. Protein Engineering, 8(11), 1129–1135. https://doi.org/10.1093/protein/8.11.1129
  • Whitcomb, D. C., & Lowe, M. E. (2007). Human pancreatic digestive enzymes. Digestive Diseases and Sciences, 52(1), 1–17. https://doi.org/10.1007/s10620-006-9589-z
  • Williams, L. K., Li, C., Withers, S. G., & Brayer, G. D. (2012). Order and disorder: Differential structural impacts of myricetin and ethyl Caffeate on human amylase, an antidiabetic target. Journal of Medicinal Chemistry, 55(22), 10177–10186. https://doi.org/10.1021/jm301273u
  • Yan, Y., Zhou, X., Guo, K., Zhou, F., & Yang, H. (2020). Use of Chlorogenic Acid against Diabetes Mellitus and Its Complications. Journal of Immunology Research, 2020, 9680508. https://doi.org/10.1155/2020/9680508
  • Ylilauri, M., & Pentikäinen, O. T. (2013). MMGBSA as a tool to understand the binding affinities of Filamin–Peptide Interactions. Journal of Chemical Information and Modeling, 53(10), 2626–2633. https://doi.org/10.1021/ci4002475
  • Yu, T.-J., Cheng, Y.-B., Lin, L.-C., Tsai, Y.-H., Yao, B.-Y., Tang, J.-Y., Chang, F.-R., Yen, C.-H., Ou-Yang, F., & Chang, H.-W. (2021). Physalis peruviana-derived physapruin A (PHA) Inhibits breast cancer cell proliferation and induces oxidative-stress-mediated apoptosis and DNA damage. Antioxidants, 10(3), 393. https://doi.org/10.3390/antiox10030393
  • Zhang, P., Zhang, X., Brown, J., Vistisen, D., Sicree, R., Shaw, J., & Nichols, G. (2010). Global healthcare expenditure on diabetes for 2010 and 2030. Diabetes Research and Clinical Practice, 87(3), 293–301. https://doi.org/10.1016/j.diabres.2010.01.026

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.