208
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Design, synthesis, molecular docking, molecular dynamic simulation, and MMGBSA analysis of 7-O-substituted 5-hydroxy flavone derivatives

, , ORCID Icon, , , & ORCID Icon show all
Pages 6378-6392 | Received 01 Mar 2023, Accepted 01 Jul 2023, Published online: 07 Aug 2023

References

  • Agwupuye, J. A., Louis, H., Gber, T. E., Ahmad, I., Agwamba, E. C., Samuel, A. B., Ejiako, E. J., Patel, H., Ita, I. T., & Bassey, V. M. (2022). Molecular modeling and DFT studies of diazenylphenyl derivatives as a potential HBV and HCV antiviral agents. Chemical Physics Impact, 5, 100122. https://doi.org/10.1016/j.chphi.2022.100122
  • Aljuhani, A., Ahmed, H. E. A., Ihmaid, S. K., Omar, A. M., Althagfan, S. S., Alahmadi, Y. M., Ahmad, I., Patel, H., Ahmed, S., Almikhlafi, M. A., El-Agrody, A. M., Zayed, M. F., Turkistani, S. A., Abulkhair, S. H., Almaghrabi, M., Salama, S. A., Al-Karmalawy, A. A., & Abulkhair, H. S. (2022). In vitro and computational investigations of novel synthetic carboxamide-linked pyridopyrrolopyrimidines with potent activity as SARS-CoV-2-MPro inhibitors. RSC Advances, 12(41), 26895–26907. https://doi.org/10.1039/D2RA04015H
  • Al-Oudat, B. A., Alqudah, M. A., Audat, S. A., Al-Balas, Q. A., El-Elimat, T., Hassan, M. A., Frhat, I. N., & Azaizeh, M. M. (2019). Design, synthesis, and biologic evaluation of novel chrysin derivatives as cytotoxic agents and caspase-3/7 activators. Drug Design, Development and Therapy, 13, 423–433. https://doi.org/10.2147/DDDT.S189476
  • Bhowmik, S., Anand, P., Das, R., Sen, T., Akhter, Y., Das, M. C., & De, U. C. (2022). Synthesis of new chrysin derivatives with substantial antibiofilm activity. Molecular Diversity, 26(1), 137–156. https://doi.org/10.1007/s11030-020-10162-7
  • Bhowmik, S., Das, T., Ghosh, S., Sharma, B. K., Majumdar, S., & De, U. C. (2018). Synthesis of some new chrysin derivatives and their biological assessment as antibacterial, antibiofilm and antifungal agent. Asian Journal of Chemistry, 30(3), 693–702. https://doi.org/10.14233/ajchem.2018.21167
  • Bilgiçli, A. T., Genç Bilgiçli, H., Günsel, A., Pişkin, H., Tüzün, B., Nilüfer Yarasir, M., & Zengin, M. (2020). The new ball-type zinc phthalocyanine with S–S bridge: Synthesis, computational and photophysicochemical properties. Journal of Photochemistry and Photobiology A: Chemistry, 389, 112287. https://doi.org/10.1016/j.jphotochem.2019.112287
  • Bortolotto, V. C., Pinheiro, F. C., Araujo, S. M., Poetini, M. R., Bertolazi, B. S., de Paula, M. T., Meichtry, L. B., de Almeida, F. P., de Freitas Couto, S., Jesse, C. R., & Prigol, M. (2018). Chrysin reverses the depressive-like behavior induced by hypothyroidism in female mice by regulating hippocampal serotonin and dopamine. European Journal of Pharmacology, 822, 78–84. https://doi.org/10.1016/j.ejphar.2018.01.017
  • Cao, X., Zhang, Y., Chen, Y., Qiu, Y., Yu, M., Xu, X., Liu, X., Liu, B. F., Zhang, L., & Zhang, G. (2018). Synthesis and biological evaluation of fused tricyclic heterocycle piperazine (piperidine) derivatives as potential multireceptor atypical antipsychotics. Journal of Medicinal Chemistry, 61(22), 10017–10039. https://doi.org/10.1021/acs.jmedchem.8b01096
  • Castañeda-Arriaga, R., Marino, T., Russo, N., Raúl Alvarez-Idaboy, J., & Galano, A. (2020). Supporting information chalcogen effects on the primary antioxidant activity of chrysin and quercetin. New Journal of Chemistry, 44(21), 9073–9082. https://doi.org/10.1039/D0NJ01795G
  • Chen, C. H., Jiang, Y., Wu, R., Tang, Y., Wan, C., Gao, H., & Mao, Z. (2021). Discovery of heterocyclic substituted dihydropyrazoles as potent anticancer agents. Bioorganic & Medicinal Chemistry Letters, 48, 128233. https://doi.org/10.1016/j.bmcl.2021.128233
  • Chen, F. H., Zhang, L. B., Qiang, L., Yang, Z., Wu, T., Zou, M. J., Tao, L., You, Q. D., Li, Z. Y., Yang, Y., & Guo, Q. L. (2010). Reactive oxygen species-mitochondria pathway involved in LYG-202-induced apoptosis in human hepatocellular carcinoma HepG2 cells. Cancer Letters, 296(1), 96–105. https://doi.org/10.1016/j.canlet.2010.04.004
  • Chung, G., Kuo, C.-L., Lin, C.-C., Yu, C.-S., Yang, J.-S., Lu, C.-C., Chiang, J.-H., Lin, J.-P., & Chung, J.-G. (2012). Chrysin, a natural and biologically active flavonoid, influences a murine leukemia model in vivo through enhancing populations of T- and B-cells, and promoting macrophage phagocytosis and NK cell cytotoxicity. In Vivo, 26(4), 665–670.
  • Cushnie, T. P. T., & Lamb, A. J. (2005). Antimicrobial activity of flavonoids. International Journal of Antimicrobial Agents, 26(5), 343–356. https://doi.org/10.1016/j.ijantimicag.2005.09.002
  • Desai, N. C., Jadeja, D. J., Jethawa, A. M., Ahmad, I., Patel, H., & Dave, B. P. (2023). Design and synthesis of some novel hybrid molecules based on 4-thiazolidinone bearing pyridine-pyrazole scaffolds: Molecular docking and molecular dynamics simulations of its major constituent onto DNA gyrase inhibition. Molecular Diversity, 1–7. https://doi.org/10.1007/s11030-023-10612-y
  • Donadio, G., Mensitieri, F., Santoro, V., Parisi, V., Bellone, M. L., de Tommasi, N., Izzo, V., & Piaz, F. D. (2021). Interactions with microbial proteins driving the antibacterial activity of flavonoids. Pharmaceutics, 13(5), 660. https://doi.org/10.3390/pharmaceutics13050660
  • Foley, T. L., Rai, G., Yasgar, A., Daniel, T., Baker, H. L., Attene-Ramos, M., Kosa, N. M., Leister, W., Burkart, M. D., Jadhav, A., Simeonov, A., & Maloney, D. J. (2014). 4-(3-Chloro-5-(trifluoromethyl)pyridin-2-yl)-N-(4-methoxypyridin-2-yl) piperazine-1-carbothioamide (ML267), a potent inhibitor of bacterial phosphopantetheinyl transferase that attenuates secondary metabolism and thwarts bacterial growth. Journal of Medicinal Chemistry, 57(3), 1063–1078. https://doi.org/10.1021/jm401752p
  • Friesner, R. A., Banks, J. L., Murphy, R. B., Halgren, T. A., Klicic, J. J., Mainz, D. T., Repasky, M. P., Knoll, E. H., Shelley, M., Perry, J. K., Shaw, D. E., Francis, P., & Shenkin, P. S. (2004). Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. Journal of Medicinal Chemistry, 47(7), 1739–1749. https://doi.org/10.1021/jm0306430
  • Genç Bilgiçli, H., Bilgiçli, A. T., Günsel, A., Tüzün, B., Ergön, D., Yarasir, M. N., & Zengin, M. (2020). Turn-on fluorescent probe for Zn2+ ions based on thiazolidine derivative. Applied Organometallic Chemistry, 34(6), e5624. https://doi.org/10.1002/aoc.5624
  • Gibson, E. G., Bax, B., Chan, P. F., & Osheroff, N. (2019). Mechanistic and structural basis for the actions of the antibacterial gepotidacin against Staphylococcus aureus gyrase. ACS Infectious Diseases, 5(4), 570–581. https://doi.org/10.1021/acsinfecdis.8b00315
  • Girase, P. S., Dhawan, S., Kumar, V., Shinde, S. R., Palkar, M. B., & Karpoormath, R. (2021). An appraisal of anti-mycobacterial activity with structure–activity relationship of piperazine and its analogues: A review. European Journal of Medicinal Chemistry, 210, 112967. https://doi.org/10.1016/j.ejmech.2020.112967
  • Guo, B., Zheng, C., Cai, W., Cheng, J., Wang, H., Li, H., Sun, Y., Cui, W., Wang, Y., Han, Y., Lee, S. M. Y., & Zhang, Z. (2016). Multifunction of chrysin in Parkinson’s model: Anti-neuronal apoptosis, neuroprotection via activation of MEF2D, and inhibition of monoamine oxidase-B. Journal of Agricultural and Food Chemistry, 64(26), 5324–5333. https://doi.org/10.1021/acs.jafc.6b01707
  • Hakobyan, N. Z., Hovasyan, Z. A., Nersesyan, L. E., Agaronyan, A. S., Danielyan, I. S., Panosyan, G. A., Gevorgyan, G. A., & Oganesyan, A. A. (2020). Synthesis and antitumor activity of piperazine-based tertiary amino alcohols and their dihydrochlorides. Russian Journal of General Chemistry, 90(6), 1088–1092. https://doi.org/10.1134/S1070363220060249
  • Halder, S. K., Ahmad, I., Shathi, J. F., Mim, M. M., Hassan, M. R., Jewel, M. J. I., Dey, P., Islam, M. S., Patel, H., Morshed, M. R., Shakil, M. S., & Hossen, M. S. (2022). A comprehensive study to unleash the putative inhibitors of Serotype2 of dengue virus: Insights from an in silico structure-based drug discovery. Molecular Biotechnology, 1–14. https://doi.org/10.1007/s12033-022-00582-1
  • Han, F., Yan, R., Zhang, M., Xiang, Z., Wu, Q., & Li, J. (2020). Synthesis and bioactivities of phenazine-1-carboxylic piperazine derivatives. Natural Product Research, 34(9), 1282–1287. https://doi.org/10.1080/14786419.2018.1556656
  • Hatnapure, G. D., Keche, A. P., Rodge, A. H., Birajdar, S. S., Tale, R. H., & Kamble, V. M. (2012). Synthesis and biological evaluation of novel piperazine derivatives of flavone as potent anti-inflammatory and antimicrobial agent. Bioorganic & Medicinal Chemistry Letters, 22(20), 6385–6390. https://doi.org/10.1016/j.bmcl.2012.08.071
  • He, Y., Xie, F., Ye, J., Deuther-Conrad, W., Cui, B., Wang, L., Lu, J., Steinbach, J., Brust, P., Huang, Y., Lu, J., & Jia, H. (2017). 1-(4-[18F]Fluorobenzyl)-4-[(tetrahydrofuran-2-yl)methyl]piperazine: A novel suitable radioligand with low lipophilicity for imaging σ1 receptors in the brain. Journal of Medicinal Chemistry, 60(10), 4161–4172. https://doi.org/10.1021/acs.jmedchem.6b01723
  • Jangid, A. K., Solanki, R., Patel, S., Medicherla, K., Pooja, D., & Kulhari, H. (2022). Improving anticancer activity of chrysin using tumor microenvironment pH-responsive and self-assembled nanoparticles. ACS Omega, 7(18), 15919–15928. https://doi.org/10.1021/acsomega.2c01041
  • Ji, Q., Deng, Q., Li, B., Li, B., & Shen, Y. (2019). Design, synthesis and biological evaluation of novel 5-(piperazin-1-yl)quinolin-2(1H)-one derivatives as potential chitin synthase inhibitors and antifungal agents. European Journal of Medicinal Chemistry, 180, 204–212. https://doi.org/10.1016/j.ejmech.2019.07.035
  • Khan, T., Sankhe, K., Suvarna, V., Sherje, A., Patel, K., & Dravyakar, B. (2018). DNA gyrase inhibitors: Progress and synthesis of potent compounds as antibacterial agents. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 103, 923–938. https://doi.org/10.1016/j.biopha.2018.04.021
  • Kim, S. R., Jeong, M. S., Mun, S. H., Cho, J., Seo, M. D., Kim, H., Lee, J., Song, J. H., & Ko, H. J. (2021). Antiviral activity of chrysin against influenza virus replication via inhibition of autophagy. Viruses, 13(7), 1350. https://doi.org/10.3390/v13071350
  • Kumar, S., Oh, J. M., Abdelgawad, M. A., Abourehab, M. A. S., Tengli, A. K., Singh, A. K., Ahmad, I., Patel, H., Mathew, B., & Kim, H. (2023). Development of isopropyl-tailed chalcones as a new class of selective MAO-B inhibitors for the treatment of Parkinson’s disorder. ACS Omega, 8(7), 6908–6917. https://doi.org/10.1021/acsomega.2c07694
  • Kumar, R. R., Sahu, B., Pathania, S., Singh, P. K., Akhtar, M. J., & Kumar, B. (2021). Piperazine, a key substructure for antidepressants: Its role in developments and structure–activity relationships. ChemMedChem, 16(12), 1878–1901. https://doi.org/10.1002/cmdc.202100045
  • Lacivita, E., Leopoldo, M., de Giorgio, P., Berardi, F., & Perrone, R. (2009). Determination of 1-aryl-4-propylpiperazine pKa values: The substituent on aryl modulates basicity. Bioorganic & Medicinal Chemistry, 17(3), 1339–1344. https://doi.org/10.1016/j.bmc.2008.12.015
  • Lee, C. C., Hsu, S. C., Lai, L. L., & Lu, K. L. (2009). Chair-Boat form transformation of piperazine-containing ligand toward the preparation of dirhenium metallacycles. Inorganic Chemistry, 48(14), 6329–6331. https://doi.org/10.1021/ic900040a
  • Li, H. X., Wang, Z. C., Qian, Y. M., Yan, X. Q., Lu, Y. D., & Zhu, H. L. (2017). Design, synthesis, and biological evaluation of chrysin derivatives as potential FabH inhibitors. Chemical Biology & Drug Design, 89(1), 136–140. https://doi.org/10.1111/cbdd.12839
  • Liu, Y., Song, X., He, J., Zheng, X., & Wu, H. (2014). Synthetic derivatives of chrysin and their biological activities. Medicinal Chemistry Research, 23(2), 555–563. https://doi.org/10.1007/s00044-013-0711-4
  • Maia, R. D. C., Tesch, R., & Fraga, C. A. M. (2012). Phenylpiperazine derivatives: A patent review (2006–Present). Expert Opinion on Therapeutic Patents, 22(10), 1169–1178. https://doi.org/10.1517/13543776.2012.719878
  • Matos, M. J., Vazquez-Rodriguez, S., Fonseca, A., Uriarte, E., Santana, L., & Borges, F. (2017). Heterocyclic antioxidants in nature: Coumarins. Current Organic Chemistry, 21(4), 311–324. https://doi.org/10.2174/1385272820666161017170652
  • Mehdi, S. H., Nafees, S., Zafaryab, M., Khan, M. A., & Alam Rizvi, M. M. (2018). Chrysin: A promising anticancer agent its current trends and future perspectives. European Journal of Experimental Biology, 8(3), 16. https://doi.org/10.21767/2248-9215.100057
  • Mehdi, S. H., Zafaryab, M., Nafees, S., Khan, A., Ahmad, I., Hafeez, Z. B., & Rizvi, M. A. (2019). Chrysin sensitizes human lung cancer cells to tumour necrosis factor related apoptosis-inducing ligand (TRAIL) mediated apoptosis. Asian Pacific Journal of Cancer Biology, 4(2), 27–33. https://doi.org/10.31557/apjcb.2019.4.2.27-33
  • Migliore, M., Pontis, S., Fuentes de Arriba, A. L., Realini, N., Torrente, E., Armirotti, A., Romeo, E., di Martino, S., Russo, D., Pizzirani, D., Summa, M., Lanfranco, M., Ottonello, G., Busquet, P., Jung, K. M., Garcia-Guzman, M., Heim, R., Scarpelli, R., & Piomelli, D. (2016). Second-generation non-covalent NAAA inhibitors are protective in a model of multiple sclerosis. Angewandte Chemie (International Edition in English), 55(37), 11193–11197. https://doi.org/10.1002/anie.201603746
  • Moussa, I. A., Banister, S. D., Beinat, C., Giboureau, N., Reynolds, A. J., & Kassiou, M. (2010). Design, synthesis, and structure–affinity relationships of regioisomeric N-benzyl alkyl ether piperazine derivatives as σ-1 receptor ligands. Journal of Medicinal Chemistry, 53(16), 6228–6239. https://doi.org/10.1021/jm100639f
  • Oršolić, N., Nemrava, J., Jeleč, Ž., Kukolj, M., Odeh, D., Jakopović, B., Jembrek, M. J., Bagatin, T., Fureš, R., & Bagatin, D. (2022). Antioxidative and anti-inflammatory activities of chrysin and naringenin in a drug-induced bone loss model in rats. International Journal of Molecular Sciences, 23(5), 2872. https://doi.org/10.3390/ijms23052872
  • Panche, A. N., Diwan, A. D., & Chandra, S. R. (2016). Flavonoids: An overview. Journal of Nutritional Science, 5, e47. https://doi.org/10.1017/jns.2016.41
  • Patel, K. B., & Kumari, P. (2022a). A review: Structure–activity relationship and antibacterial activities of Quinoline based hybrids. In Journal of Molecular Structure, 1268, 133634. https://doi.org/10.1016/j.molstruc.2022.133634
  • Patel, K. B., & Kumari, P. (2022b). Anticancer activity and docking study of flavone derivatives as peroxisome proliferator-activated receptorγ inhibitors. Structural Chemistry, 33(6), 1835–1851. https://doi.org/10.1007/s11224-022-01926-y
  • Patel, R. V., Mistry, B., Syed, R., Rathi, A. K., Lee, Y. J., Sung, J. S., Shinf, H. S., & Keum, Y. S. (2016). Chrysin-piperazine conjugates as antioxidant and anticancer agents. European Journal of Pharmaceutical Sciences: Official Journal of the European Federation for Pharmaceutical Sciences, 88, 166–177. https://doi.org/10.1016/j.ejps.2016.02.011
  • Patel, K. B., Mukherjee, S., Bhatt, H., Rajani, D., Ahmad, I., Patel, H., & Kumari, P. (2023). Synthesis, docking, and biological investigations of new coumarin-piperazine hybrids as potential antibacterial and anticancer agents. Journal of Molecular Structure, 1276, 134755. https://doi.org/10.1016/j.molstruc.2022.134755
  • Patel, K., Vallabhbhai, S., & Kumari, P. (2020). Phytochemical analysis of Garcinia species View project. In Advances in chemistry research (pp. 147–198). Nova Science Publishers, Inc. https://www.researchgate.net/publication/359842232
  • Patil, M., Noonikara-Poyil, A., Joshi, S. D., Patil, S. A., Patil, S. A., Lewis, A. M., & Bugarin, A. (2022). Synthesis, molecular docking studies, and in vitro antimicrobial evaluation of piperazine and triazolo-pyrazine derivatives. Molecular Diversity, 26(2), 827–841. https://doi.org/10.1007/s11030-021-10190-x
  • Pawar, J. S., Mustafa, S., & Ghosh, I. (2022). Chrysin and Capsaicin induces premature senescence and apoptosis via mitochondrial dysfunction and p53 elevation in cervical cancer cells. Saudi Journal of Biological Sciences, 29(5), 3838–3847. https://doi.org/10.1016/j.sjbs.2022.03.011
  • Rasouli, S., & Zarghami, N. (2018). Synergistic growth inhibitory effects of Chrysin and Metformin combination on breast cancer cells through hTERT and cyclin D1 suppression. Asian Pacific Journal of Cancer Prevention, 19(4), 977–982. https://doi.org/10.22034/APJCP.2018.19.4.977
  • Rathi, A. K., Syed, R., Shin, H. S., & Patel, R. V. (2016). Piperazine derivatives for therapeutic use: A patent review (2010–present). Expert Opinion on Therapeutic Patents, 26(7), 777–797. https://doi.org/10.1080/13543776.2016.1189902
  • Rauha, P., Remes, S., Heinonen, M., Hopia, A., Kahkonen, M., Kujala, T., Pihlaja, K., Vuorela, H., & Vuorela, P. (2000). Antimicrobial effects of Finnish plant extracts containing flavonoids and other phenolic compounds. International Journal of Food Microbiology, 56(1), 3–12. www.elsevier.nl/locate/ijfoodmicro https://doi.org/10.1016/s0168-1605(00)00218-x
  • Salama, A. A. A., & Allam, R. M. (2021). Promising targets of chrysin and daidzein in colorectal cancer: Amphiregulin, CXCL1, and MMP-9. European Journal of Pharmacology, 892, 173763. https://doi.org/10.1016/j.ejphar.2020.173763
  • Sharma, A., Wakode, S., Fayaz, F., Khasimbi, S., Pottoo, F. H., & Kaur, A. (2020). An overview of piperazine scaffold as promising nucleus for different therapeutic targets. Current Pharmaceutical Design, 26(35), 4373–4385. https://doi.org/10.2174/1381612826666200417154810
  • Sudevan, S. T., Oh, J. M., Abdelgawad, M. A., Abourehab, M. A. S., Rangarajan, T. M., Kumar, S., Ahmad, I., Patel, H., Kim, H., & Mathew, B. (2022). Introduction of benzyloxy pharmacophore into aryl/heteroaryl chalcone motifs as a new class of monoamine oxidase B inhibitors. Scientific Reports, 12(1), 22404. https://doi.org/10.1038/s41598-022-26929-x
  • Tamayo, N. A., Norman, M. H., Bartberger, M. D., Hong, F. T., Bo, Y., Liu, L., Nishimura, N., Yang, K. C., Tadesse, S., Fotsch, C., Chen, J., Chmait, S., Cupples, R., Hale, C., Jordan, S. R., Lloyd, D. J., Sivits, G., Van, G., & St. Jean, D. J. (2015). Small molecule disruptors of the glucokinase-glucokinase regulatory protein interaction: 5. A novel aryl sulfone series, optimization through conformational analysis. Journal of Medicinal Chemistry, 58(11), 4462–4482. https://doi.org/10.1021/jm5018175
  • Theja, N. D., Avsss, G., & Reddy, K. (2011). A facile synthesis of flavone derivatives used as potent anti-inflammatory agents. Internafional Journal of Pharmacy and Pharmaceufical Sciences, 3, 51.
  • Torgal Martins, B., & Marta Ramos Pinto Correia da Silva Carvalho Guerra, P. (2017). Synthetic analogues of marine natural flavonoids as antifouling agents: Synthesis and biological evaluation.
  • Valdez-Calderón, A., González-Montiel, S., Martínez-Otero, D., Martínez-Torres, A., Vásquez-Pérez, J. M., Molina-Vera, C., Torres-Valencia, J. M., Alvarado-Rodríguez, J. G., & Cruz-Borbolla, J. (2016). Synthesis, structural study and biological activity of new derivatives of chrysin containing a 2-mercaptopyridyl or 5-(trifluoromethyl)-2-mercaptopyridyl fragments. Journal of Molecular Structure, 1110, 196–207. https://doi.org/10.1016/j.molstruc.2016.01.055
  • Wu, T., Zang, X., He, M., Pan, S., & Xu, X. (2013). Structure–activity relationship of flavonoids on their anti-Escherichia coli activity and inhibition of DNA gyrase. Journal of Agricultural and Food Chemistry, 61(34), 8185–8190. https://doi.org/10.1021/jf402222v
  • Xie, Y., Yang, W., Tang, F., Chen, X., & Ren, L. (2015). Antibacterial activities of flavonoids: Structure–activity relationship and mechanism. Current Medicinal Chemistry, 22(1), 132–149. https://doi.org/10.2174/0929867321666140916113443
  • Zala, A. R., Rajani, D. P., Ahmad, I., Patel, H., & Kumari, P. (2023). Synthesis, characterization, molecular dynamic simulation, and biological assessment of cinnamates linked to imidazole/benzimidazole as a CYP51 inhibitor. Journal of Biomolecular Structure & Dynamics, 1–17. https://doi.org/10.1080/07391102.2023.2170918
  • Zala, A. R., Rajani, D. P., & Kumari, P. (2022a). Design, synthesis, molecular docking and antimicrobial and antimycobacterial activities of novel hybrid of coumarin-cinnamic acids. Chemical Data Collections, 39, 100862. https://doi.org/10.1016/j.cdc.2022.100862
  • Zala, A. R., Rajani, D. P., & Kumari, P. (2022b). Synthesis, molecular docking, ADME study, and antimicrobial potency of piperazine based cinnamic acid bearing coumarin moieties as a DNA gyrase inhibitor. Journal of Biochemical and Molecular Toxicology, 37(1), e23231. https://doi.org/10.1002/jbt.23231
  • Zhang, R. H., Guo, H. Y., Deng, H., Li, J., & Quan, Z. S. (2021). Piperazine skeleton in the structural modification of natural products: A review. Journal of Enzyme Inhibition and Medicinal Chemistry, 36(1), 1165–1197. https://doi.org/10.1080/14756366.2021.1931861
  • Zheng, W. F., Tan, R. X., Yang, L., & Liu, Z. L. (1996). Two flavones from Artemisia giraldil and their antimicrobial activity. Planta Medica, 62(2), 160–162. https://doi.org/10.1055/s-2006-957841

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.