84
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

A bi-layer model for identification of piwiRNA using deep neural learning

, , , , &
Pages 5725-5733 | Received 08 May 2023, Accepted 15 Jun 2023, Published online: 22 Aug 2023

References

  • Ahmad, A., Akbar, S., Hayat, M., Ali, F., & Sohail, M. (2020). Identification of antioxidant proteins using a discriminative intelligent model of k-space amino acid pairs based descriptors incorporating with ensemble feature selection. Biocybernetics and Biomedical Engineering.
  • Ahmad, A., Akbar, S., Khan, S., Hayat, M., Ali, F., Ahmed, A., & Tahir, M. (2021). Deep-AntiFP: Prediction of antifungal peptides using distanct multi-informative features incorporating with deep neural networks. Chemometrics and Intelligent Laboratory Systems, 208, 104214. https://doi.org/10.1016/j.chemolab.2020.104214
  • Ahmad, A., Akbar, S., Tahir, M., Hayat, M., & Ali, F. (2022). iAFPs-EnC-GA: Identifying antifungal peptides using sequential and evolutionary descriptors based multi-information fusion and ensemble learning approach. Chemometrics and Intelligent Laboratory Systems, 222, 104516. https://doi.org/10.1016/j.chemolab.2022.104516
  • Ahmed, S., Kabir, M., Arif, M., Ali, Z., Ali, F., & Swati, Z. N. K. J. (2018). Improving secretory proteins prediction in Mycobacterium tuberculosis using the unbiased dipeptide composition with support vector machine. International Journal of Data Mining and Bioinformatics, 21(3), 212–229. https://doi.org/10.1504/IJDMB.2018.097682
  • Akbar, S., Ahmad, A., Hayat, M., Rehman, A. U., Khan, S., & Ali, F. (2021). iAtbP-Hyb-EnC: Prediction of antitubercular peptides via heterogeneous feature representation and genetic algorithm based ensemble learning model. Computers in Biology and Medicine, 137, 104778. https://doi.org/10.1016/j.compbiomed.2021.104778
  • Akbar, S., Ali, H., Ahmad, A., Sarker, M. R., Saeed, A., Salwana, E., Gul, S., Khan, A., & Ali, F. J. I. A. (2023). Prediction of amyloid proteins using embedded evolutionary & ensemble feature selection based descriptors with eXtreme Gradient Boosting Model. IEEE Access, 11, 39024–39036.
  • Akbar, S., Ali, F., Hayat, M., Ahmad, A., Khan, S., & Gul, S. (2022). Prediction of Antiviral peptides using transform evolutionary & SHAP analysis based descriptors by incorporation with ensemble learning strategy. Chemometrics and Intelligent Laboratory Systems, 230, 104682. https://doi.org/10.1016/j.chemolab.2022.104682
  • Akbar, S., Khan, S., Ali, F., Hayat, M., Qasim, M., & Gul, S. (2020). iHBP-DeepPSSM: Identifying hormone binding proteins using PsePSSM based evolutionary features and deep learning approach. Chemometrics and Intelligent Laboratory Systems, 204, 104103. https://doi.org/10.1016/j.chemolab.2020.104103
  • Akbar, S., Mohamed, H. G., Ali, H., Saeed, A., Ahmed, A., Gul, S., … Assam, M. J. I. A. (2023). Identifying neuropeptides via evolutionary and sequential based multi-perspective descriptors by incorporation with ensemble classification strategy. IEEE Access.
  • Ali, F., Ahmed, S., Swati, Z. N. K., & Akbar, S. (2019). DP-BINDER: Machine learning model for prediction of DNA-binding proteins by fusing evolutionary and physicochemical information. Journal of Computer-Aided Molecular Design, 33(7), 645–658. https://doi.org/10.1007/s10822-019-00207-x
  • Ali, F., Akbar, S., Ali, G., Maher, Z. A., Unar, A., & Talpur, D. B. (2021). AFP-CMBPred: Computational identification of antifreeze proteins by extending consensus sequences into multi-blocks evolutionary information. Computers in Biology and Medicine, 139, 105006. https://doi.org/10.1016/j.compbiomed.2021.105006
  • Ali, F., Arif, M., Khan, Z. U., Kabir, M., Ahmed, S., & Yu, D.-J. (2020). SDBP-Pred: Prediction of single-stranded and double-stranded DNA-binding proteins by extending consensus sequence and K-segmentation strategies into PSSM. Analytical Biochemistry, 589, 113494. https://doi.org/10.1016/j.ab.2019.113494
  • Ali, F., Barukab, O., Gadicha, A. B., Patil, S., Alghushairy, O., & Sarhan, A. Y. (2022). DBP-iDWT: Improving DNA-binding proteins prediction using multi-perspective evolutionary profile and discrete wavelet transform. Computational Intelligence and Neuroscience, 2022, 2987407. 2022. https://doi.org/10.1155/2022/2987407
  • Ali, F., Ghulam, A., Maher, Z. A., Khan, M. A., Khan, S. A., Hongya, W., Adnan  . (2022). Deep-PCL: A deep learning model for prediction of cancerlectins and non cancerlectins using optimized integrated features. Chemometrics and Intelligent Laboratory Systems, 221, 104484. https://doi.org/10.1016/j.chemolab.2021.104484
  • Ali, F., & Hayat, M. (2015). Classification of membrane protein types using Voting Feature Interval in combination with Chou׳ s Pseudo Amino Acid Composition. Journal of Theoretical Biology, 384, 78–83. https://doi.org/10.1016/j.jtbi.2015.07.034
  • Ali, F., & Hayat, M. (2016). Machine learning approaches for discrimination of extracellular matrix proteins using hybrid feature space. Journal of Theoretical Biology, 403, 30–37. https://doi.org/10.1016/j.jtbi.2016.05.011
  • Ali, F., Kabir, M., Arif, M., Swati, Z. N. K., Khan, Z. U., Ullah, M., & Yu, D.-J. (2018). DBPPred-PDSD: Machine learning approach for prediction of DNA-binding proteins using Discrete Wavelet Transform and optimized integrated features space. Chemometrics and Intelligent Laboratory Systems, 182, 21–30. https://doi.org/10.1016/j.chemolab.2018.08.013
  • Ali, F., Kumar, H., Alghamdi, W., Kateb, F. A., & Alarfaj, F. K. J. A. o C. M. i E. (2023). Recent advances in machine learning-based models for prediction of antiviral peptides. Archives of Computational Methods in Engineering, 30, 4033–4044. .
  • Ali, F., Kumar, H., Patil, S., Ahmad, A., Babour, A., & Daud, A. (2022). Deep-GHBP: Improving prediction of Growth Hormone-binding proteins using deep learning model. Biomedical Signal Processing and Control, 78, 103856. https://doi.org/10.1016/j.bspc.2022.103856
  • Ali, F., Kumar, H., Patil, S., Ahmed, A., Banjar, A., & Daud, A. (2022). DBP-DeepCNN: Prediction of DNA-binding proteins using wavelet-based denoising and deep learning. Chemometrics and Intelligent Laboratory Systems, 229, 104639. https://doi.org/10.1016/j.chemolab.2022.104639
  • Ali, F., Kumar, H., Patil, S., Kotecha, K., Banjar, A., & Daud, A. (2022). Target-DBPPred: An intelligent model for prediction of DNA-binding proteins using discrete wavelet transform based compression and light eXtreme gradient boosting. Computers in Biology and Medicine, 145, 105533. https://doi.org/10.1016/j.compbiomed.2022.105533
  • Aravin, A., Gaidatzis, D., Pfeffer, S., Lagos-Quintana, M., Landgraf, P., Iovino, N., Morris, P., Brownstein, M. J., Kuramochi-Miyagawa, S., Nakano, T., Chien, M., Russo, J. J., Ju, J., Sheridan, R., Sander, C., Zavolan, M., & Tuschl, T. (2006). A novel class of small RNAs bind to MILI protein in mouse testes. Nature, 442(7099), 203–207. https://doi.org/10.1038/nature04916
  • Arif, M., Ahmad, S., Ali, F., Fang, G., Li, M., & Yu, D.-J. (2020). TargetCPP: Accurate prediction of cell-penetrating peptides from optimized multi-scale features using gradient boost decision tree. Journal of Computer-Aided Molecular Design, 34(8), 841–856. https://doi.org/10.1007/s10822-020-00307-z
  • Banjar, A., Ali, F., Alghushairy, O., & Daud, A. (2022). iDBP-PBMD: A machine learning model for detection of DNA-binding proteins by extending compression techniques into evolutionary profile. Chemometrics and Intelligent Laboratory Systems, 231, 104697. https://doi.org/10.1016/j.chemolab.2022.104697
  • Barukab, O., Ali, F., Alghamdi, W., Bassam, Y., & Khan, S. A. (2022). DBP-CNN: Deep Learning-based prediction of DNA-binding proteins by coupling discrete cosine transform with two-dimensional convolutional neural network. Expert Systems with Applications, 197, 116729. https://doi.org/10.1016/j.eswa.2022.116729
  • Barukab, O., Ali, F., & Khan, S. A. (2021). DBP-GAPred: An intelligent method for prediction of DNA-binding proteins types by enhanced evolutionary profile features with ensemble learning. Journal of Bioinformatics and Computational Biology, 19(4), 2150018. https://doi.org/10.1142/S0219720021500189
  • Bu, D., Yu, K., Sun, S., Xie, C., Skogerbø, G., Miao, R., Xiao, H., Liao, Q., Luo, H., Zhao, G., Zhao, H., Liu, Z., Liu, C., Chen, R., & Zhao, Y. (2012). NONCODE v3. 0: Integrative annotation of long noncoding RNAs. Nucleic Acids Research, 40(Database issue), D210–D215. https://doi.org/10.1093/nar/gkr1175
  • Dao, F.-Y., Liu, M.-L., Su, W., Lv, H., Zhang, Z.-Y., Lin, H., & Liu, L. J. (2023). AcrPred: A hybrid optimization with enumerated machine learning algorithm to predict Anti-CRISPR proteins. International Journal of Biological Macromolecules, 228, 706–714. https://doi.org/10.1016/j.ijbiomac.2022.12.250
  • Dao, F.-Y., Lv, H., Fullwood, M. J., & Lin, H. J. R. (2022). Accurate identification of DNA replication origin by fusing epigenomics and chromatin interaction information. Research, 2022, 9780293.
  • Eddy, S. R. J. (2001). Non–coding RNA genes and the modern RNA world. Nature Reviews. Genetics, 2(12), 919–929. https://doi.org/10.1038/35103511
  • Ghulam, A., Ali, F., Sikander, R., Ahmad, A., Ahmed, A., & Patil, S. (2022). ACP-2DCNN: Deep learning-based model for improving prediction of anticancer peptides using two-dimensional convolutional neural network. Chemometrics and Intelligent Laboratory Systems, 226, 104589. https://doi.org/10.1016/j.chemolab.2022.104589
  • Ghulam, A., Memon, M., Hyder, M., Maher, Z., Unar, A., Swati, Z., Talpur, B. D., Sikander, R., Ullah, I., & Farman, A. J. B. R. (2021). Identification of novel protein sequencing SARS CoV-2 coronavirus using machine learning. Bioscience Research, 47–58.
  • Ghulam, A., Sikander, R., & Ali, F. (2022). AI and machine learning-based practices in various domains: A survey.
  • Ghulam, A., Sikander, R., Ali, F., Swati, Z. N. K., Unar, A., & Talpur, D. B. (2022). Accurate prediction of immunoglobulin proteins using machine learning model. VAWKUM Transactions on Computer Sciences, 8, 21-41. https://doi.org/10.1016/j.imu.2022.100885
  • Ghulam, A., Swati, Z. N. K., Ali, F., Tunio, S., Jabeen, N., & Iqbal, N. (2023). Deepimmuno-PSSM: Identification of immunoglobulin based on deep learning and PSSM-Profiles. VAWKUM Transactions on Computer Sciences, 8, 54–66.
  • Jia, C., & He, W. J. S. r (2016). EnhancerPred: A predictor for discovering enhancers based on the combination and selection of multiple features. Methods, 6(1), 38741.
  • Jia, J., Liu, Z., Xiao, X., Liu, B., & Chou, K.-C. (2016). iPPBS-Opt: A sequence-based ensemble classifier for identifying protein-protein binding sites by optimizing imbalanced training datasets. Molecules, 21(1), 95. https://doi.org/10.3390/molecules21010095
  • Jia, J., Liu, Z., Xiao, X., Liu, B., & Chou, K.-C. (2016). iSuc-PseOpt: Identifying lysine succinylation sites in proteins by incorporating sequence-coupling effects into pseudo components and optimizing imbalanced training dataset. Analytical Biochemistry, 497, 48–56. https://doi.org/10.1016/j.ab.2015.12.009
  • Kabir, M., Arif, M., Ali, F., Ahmad, S., Swati, Z. N. K., & Yu, D.-J. (2019). Prediction of membrane protein types by exploring local discriminative information from evolutionary profiles. Analytical Biochemistry, 564-565, 123–132. https://doi.org/10.1016/j.ab.2018.10.027
  • Khan, Z. U., Ali, F., Ahmad, I., Hayat, M., & Pi, D. (2019). iPredCNC: Computational prediction model for cancerlectins and non-cancerlectins using novel cascade features subset selection. Chemometrics and Intelligent Laboratory Systems, 195, 103876. https://doi.org/10.1016/j.chemolab.2019.103876
  • Khan, Z. U., Ali, F., Khan, I. A., Hussain, Y., & Pi, D. (2019). iRSpot-SPI: Deep learning-based recombination spots prediction by incorporating secondary sequence information coupled with physio-chemical properties via Chou’s 5-step rule and pseudo components. Chemometrics and Intelligent Laboratory Systems, 189, 169–180. https://doi.org/10.1016/j.chemolab.2019.05.003
  • Khan, I. A., Pi, D., Khan, N., Khan, Z. U., Hussain, Y., Nawaz, A., & Ali, F. (2021). A privacy-conserving framework based intrusion detection method for detecting and recognizing malicious behaviours in cyber-physical power networks. Applied Intelligence, 51(10), 7306–7321. https://doi.org/10.1007/s10489-021-02222-8]
  • Khan, Z. U., Pi, D., Yao, S., Nawaz, A., Ali, F., & Ali, S. (2021). piEnPred: A bi-layered discriminative model for enhancers and their subtypes via novel cascade multi-level subset feature selection algorithm. Frontiers of Computer Science, 15(6), 1–11. https://doi.org/10.1007/s11704-020-9504-3
  • Khan, A., Uddin, J., Ali, F., Ahmad, A., Alghushairy, O., Banjar, A., & Daud, A. (2022). Prediction of antifreeze proteins using machine learning. Scientific Reports, 12(1), 20672. https://doi.org/10.1038/s41598-022-24501-1
  • Khan, A., Uddin, J., Ali, F., Banjar, A., & Daud, A. (2023). Comparative analysis of the existing methods for prediction of antifreeze proteins. Chemometrics and Intelligent Laboratory Systems, 232, 104729. https://doi.org/10.1016/j.chemolab.2022.104729
  • Khan, A., Uddin, J., Ali, F., Kumar, H., Alghamdi, W., & Ahmad,. (2023). AFP-SPTS: An accurate prediction of antifreeze proteins using sequential and pseudo-tri-slicing evolutionary features with an extremely randomized tree. Journal of Chemical Information Modeling, 63(3), 826–834.
  • Li, D., Luo, L., Zhang, W., Liu, F., & Luo, F., & (2016). A genetic algorithm-based weighted ensemble method for predicting transposon-derived piRNAs. BMC Informatics, 17, 1–11.
  • Liu, B., Yang, F., Chou, K.-C. (2017). 2L-piRNA: A two-layer ensemble classifier for identifying piwi-interacting RNAs and their function. Molecular Therapy. Nucleic Acids, 7, 267–277. https://doi.org/10.1016/j.omtn.2017.04.008
  • Long, J., Yang, H., Yang, Z., Jia, Q., Liu, L., Kong, L., Cui, H., Ding, S., Qin, Q., Zhang, N., Feng, X., Yan, S., Tang, J., Chen, S., Han, Y., Jiang, T., Wen, Z., Qi, N., Deng, K., Sun, Z., Lin, H., & Yan, D. (2021). Integrated biomarker profiling of the metabolome associated with impaired fasting glucose and type 2 diabetes mellitus in large‐scale Chinese patients. Clinical Translational Medicine 11(6).
  • Luo, L., Li, D., Zhang, W., Tu, S., Zhu, X., & Tian, G. J. P. o (2016). Accurate prediction of transposon-derived piRNAs by integrating various sequential and physicochemical features. PloS One, 11(4), e0153268. https://doi.org/10.1371/journal.pone.0153268
  • Mattick, J. S. J. S. (2005). The functional genomics of noncoding RNA. Science (New York, N.Y.), 309(5740), 1527–1528. https://doi.org/10.1126/science.1117806
  • Mei, Y., Clark, D., & Mao, L. J. (2013). Novel dimensions of piRNAs in cancer. Cancer Letters, 336(1), 46–52. https://doi.org/10.1016/j.canlet.2013.04.008
  • Rahu, S., Ghulam, A., Farman, A., Talpur, D. B., Talpur, M. S. H., Saba, E., Maher, Z. A., & Tunio, S. (2022). UBI-XGB: Identification of ubiquitin proteins using machine learning model. Journal of Mountain Area Research, 8, 14–26. https://doi.org/10.53874/jmar.v8i0.167
  • Sarkar, A., & Ghosh, Z. (2019). Rejuvenation of piRNAs in emergence of cancer and other diseases. In AGO-driven non-coding RNAs (pp. 319–333). Elsevier.
  • Sikander, R., Ghulam, A., & Ali, F. (2022). XGB-DrugPred: Computational prediction of druggable proteins using eXtreme gradient boosting and optimized features set. Scientific Reports, 12(1), 5505. https://doi.org/10.1038/s41598-022-09484-3
  • Su, W., Xie, X.-Q., Liu, X.-W., Gao, D., Ma, C.-Y., Zulfiqar, H., Yang, H., Lin, H., Yu, X.-L., & Li, Y.-W. (2023). iRNA-ac4C: A novel computational method for effectively detecting N4-acetylcytidine sites in human mRNA. International Journal of Biological Macromolecules, 227, 1174–1181. https://doi.org/10.1016/j.ijbiomac.2022.11.299
  • Swati, Z. N. K., Zhao, Q., Kabir, M., Ali, F., Ali, Z., Ahmed, S., & Lu, J. (2019). Brain tumor classification for MR images using transfer learning and fine-tuning. Computerized Medical Imaging and Graphics : The Official Journal of the Computerized Medical Imaging Society, 75, 34–46. https://doi.org/10.1016/j.compmedimag.2019.05.001
  • Ullah, M., Iltaf, A., Hou, Q., Ali, F., & Liu, C. (2018). A foreground extraction approach using convolutional neural network with graph cut [Paper presentation].Paper Presented at the 2018 IEEE 3rd International Conference on Image, Vision and Computing (ICIVC)., https://doi.org/10.1109/ICIVC.2018.8492887
  • Wang, K., Liang, C., Liu, J., Xiao, H., Huang, S., Xu, J., & Li, F. (2014). Prediction of piRNAs using transposon interaction and a support vector machine. BMC Bioinformatics 15, 1–8.
  • Yang, Y., Gao, D., Xie, X., Qin, J., Li, J., Lin, H., … Deng, K. J. C. P. (2022). DeepIDC: A prediction framework of injectable drug combination based on heterogeneous information and deep learning, Clinical Pharmacokinetics 1–11.
  • Yang, H., Luo, Y., Ren, X., Wu, M., He, X., Peng, B., … Lin, H. J. (2021). Risk prediction of diabetes: Big data mining with fusion of multifarious physical examination indicators. Information Fusion 75, 140–149. https://doi.org/10.1016/j.inffus.2021.02.015
  • Zhang, P., Si, X., Skogerbø, G., Wang, J., Cui, D., Li, Y., & Chen, R. J. D. (2014). piRBase: A web resource assisting piRNA functional study. Database (Oxford), 2014, 1–7.
  • Zhang, Y.-F., Wang, Y.-H., Gu, Z.-F., Pan, X., Li, J., Ding, H., & Deng, K. J. F., (2023). Bitter-RF: A random forest machine model for recognizing bitter peptides, Frontiers in Medicine 10, 35.
  • Zhang, Y., Wang, X., & Kang, L. J. B. (2011). A k-mer scheme to predict piRNAs and characterize locust piRNAs. Bioinformatics (Oxford, England), 27(6), 771–776. https://doi.org/10.1093/bioinformatics/btr016

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.