160
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Evaluation of Cordyceps militaris steroids as anti-inflammatory agents to combat the Covid-19 cytokine storm: a bioinformatics and structure-based drug designing approach

, , , , , & show all
Pages 5159-5177 | Received 29 Nov 2022, Accepted 08 Jun 2023, Published online: 07 Aug 2023

References

  • Asokananthan, N., Graham, P. T., Fink, J., Knight, D. A., Bakker, A. J., McWilliam, A. S., Thompson, P. J., & Stewart, G. A. (2002). Activation of protease-activated receptor (PAR)-1, PAR-2, and PAR-4 stimulates IL-6, IL-8, and prostaglandin E2 release from human respiratory epithelial cells. Journal of Immunology (Baltimore, Md. : 1950), 168(7), 3577–3585. https://doi.org/10.4049/jimmunol.168.7.3577
  • Azkur, A. K., Akdis, M., Azkur, D., Sokolowska, M., van de Veen, W., Brüggen, M.-C., O'Mahony, L., Gao, Y., Nadeau, K., & Akdis, C. A. (2020). Immune response to SARS‐CoV‐2 and mechanisms of immunopathological changes in COVID‐19. Allergy, 75(7), 1564–1581. https://doi.org/10.1111/all.14364
  • Beacon, T. H., Su, R. C., Lakowski, T. M., Delcuve, G. P., & Davie, J. R. (2020). SARS‐CoV‐2 multifaceted interaction with the human host. Part II: Innate immunity response, immunopathology, and epigenetics. IUBMB Life, 72(11), 2331–2354. https://doi.org/10.1002/iub.2379
  • Biswas, D. K., Singh, S., Shi, Q., Pardee, A. B., & Iglehart, J. D. (2005). Crossroads of estrogen receptor and NF-κB signaling. Science’s STKE: Signal Transduction Knowledge Environment, 2005(288), pe27–pe27. https://doi.org/10.1126/stke.2882005pe27
  • Brotherton, H., Usuf, E., Nadjm, B., Forrest, K., Bojang, K., Samateh, A. L., Bittaye, M., Roberts, C. A., d‘Alessandro, U., & Roca, A. (2020). Dexamethasone for COVID-19: Data needed from randomised clinical trials in Africa. The Lancet. Global Health, 8(9), e1125–e1126. https://doi.org/10.1016/S2214-109X(20)30318-1
  • Chen, X., Liu, M., & Gilson, M. K. (2001). BindingDB: A web-accessible molecular recognition database. Combinatorial Chemistry & High Throughput Screening, 4(8), 719–725. https://doi.org/10.2174/1386207013330670
  • Cheng, B.-F., Hou, Y.-Y., Jiang, M., Zhao, Z.-Y., Dong, L.-Y., & Bai, G. (2013). Anti-inflammatory mechanism of Qingfei Xiaoyan Wan studied with network pharmacology. Yao Xue Xue Bao = Acta Pharmaceutica Sinica, 48(5), 686–693.
  • Choi, E., Oh, J., & Sung, G.-H. (2020). Antithrombotic and antiplatelet effects of Cordyceps militaris. Mycobiology, 48(3), 228–232. https://doi.org/10.1080/12298093.2020.1763115
  • Choudhary, S., Sharma, K., Singh, H., & Silakari, O. (2021). The interplay between inflammatory pathways and COVID-19: A critical review on pathogenesis and therapeutic options. Microbial Pathogenesis, 150, 104673–104673. https://doi.org/10.1016/j.micpath.2020.104673
  • Coen, M., Allali, G., Adler, D., & Serratrice, J. (2020). Hypoxemia in COVID‐19; Comment on: “The neuroinvasive potential of SARS‐CoV2 may play a role in the respiratory failure of COVID‐19 patients. Journal of Medical Virology, 92(10), 1705–1706. https://doi.org/10.1002/jmv.26020
  • Consortium, U. (2007). The universal protein resource (UniProt). Nucleic Acids Research, 36(suppl_1), D190–D195.
  • Consortium, U. (2015). UniProt: A hub for protein information. Nucleic Acids Research, 43(D1), D204–D212.
  • Costela-Ruiz, V. J., Illescas-Montes, R., Puerta-Puerta, J. M., Ruiz, C., & Melguizo-Rodríguez, L. (2020). SARS-CoV-2 infection: The role of cytokines in COVID-19 disease. Cytokine & Growth Factor Reviews, 54, 62–75. https://doi.org/10.1016/j.cytogfr.2020.06.001
  • de Julián-Ortiz, J. V., Gálvez, J., Muñoz-Collado, C., García-Domenech, R., & Gimeno-Cardona, C. (1999). Virtual combinatorial syntheses and computational screening of new potential anti-herpes compounds. Journal of Medicinal Chemistry, 42(17), 3308–3314. https://doi.org/10.1021/jm981132u
  • de Las Casas-Engel, M., & Corbí, A. L. (2014). Serotonin modulation of macrophage polarization: Inflammation and beyond. In Oxidative Stress and Inflammation in Non-Communicable Diseases-Molecular Mechanisms and Perspectives in Therapeutics (pp. 89–115). Jordi Camps, Springer.
  • Fitzpatrick, L. R., Small, J., O'Connell, R., Talbott, G., Alton, G., & Zapf, J. (2020). VPR-254: An inhibitor of ROR-gamma T with potential utility for the treatment of inflammatory bowel disease. Inflammopharmacology, 28(2), 499–511. https://doi.org/10.1007/s10787-019-00643-z
  • Flanagan, T. W., & Nichols, C. D. (2018). Psychedelics as anti-inflammatory agents. International Review of Psychiatry (Abingdon, England), 30(4), 363–375. https://doi.org/10.1080/09540261.2018.1481827
  • Garza, J. C., Guo, M., Zhang, W., & Lu, X.-Y. (2012). Leptin restores adult hippocampal neurogenesis in a chronic unpredictable stress model of depression and reverses glucocorticoid-induced inhibition of GSK-3β/β-catenin signaling. Molecular Psychiatry, 17(8), 790–808. https://doi.org/10.1038/mp.2011.161
  • Harris, H. A. (2007). Estrogen receptor-β: Recent lessons from in vivo studies. Molecular Endocrinology (Baltimore, Md.), 21(1), 1–13. https://doi.org/10.1210/me.2005-0459
  • Hopkins, A. L. (2008). Network pharmacology: The next paradigm in drug discovery. Nature Chemical Biology, 4(11), 682–690. https://doi.org/10.1038/nchembio.118
  • Hu, B., Huang, S., & Yin, L. (2021). The cytokine storm and COVID‐19. Journal of Medical Virology, 93(1), 250–256. https://doi.org/10.1002/jmv.26232
  • Hwang, I. K., Lim, S. S., Yoo, K.-Y., Lee, Y. S., Kim, H. G., Kang, I.-J., Kwon, H. J., Park, J., Choi, S. Y., & Won, M.-H. (2008). A phytochemically characterized extract of Cordyceps militaris and cordycepin protect hippocampal neurons from ischemic injury in gerbils. Planta Medica, 74(2), 114–119. https://doi.org/10.1055/s-2008-1034277
  • Jin, Y., Yang, H., Ji, W., Wu, W., Chen, S., Zhang, W., & Duan, G. (2020). Virology, epidemiology, pathogenesis, and control of COVID-19. Viruses, 12(4), 372. https://doi.org/10.3390/v12040372
  • Jose, R. J., & Manuel, A. (2020). COVID-19 cytokine storm: The interplay between inflammation and coagulation. The Lancet. Respiratory Medicine, 8(6), e46–e47. https://doi.org/10.1016/S2213-2600(20)30216-2
  • Kalaitzidis, D., & Gilmore, T. D. (2005). Transcription factor cross-talk: The estrogen receptor and NF-κB. Trends in Endocrinology and Metabolism: TEM, 16(2), 46–52. https://doi.org/10.1016/j.tem.2005.01.004
  • Kibble, M., Saarinen, N., Tang, J., Wennerberg, K., Mäkelä, S., & Aittokallio, T. (2015). Network pharmacology applications to map the unexplored target space and therapeutic potential of natural products. Natural Product Reports, 32(8), 1249–1266. https://doi.org/10.1039/c5np00005j
  • Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B. A., Thiessen, P. A., Yu, B., Zaslavsky, L., Zhang, J., & Bolton, E. E. (2019). PubChem 2019 update: Improved access to chemical data. Nucleic Acids Research, 47(D1), D1102–D1109. https://doi.org/10.1093/nar/gky1033
  • Kiran, G., Karthik, L., Devi, M. S., Sathiyarajeswaran, P., Kanakavalli, K., Kumar, K., & Kumar, D. R. (2022). In silico computational screening of Kabasura Kudineer-official Siddha formulation and JACOM against SARS-CoV-2 spike protein. Journal of Ayurveda and Integrative Medicine, 13(1), 100324.
  • Kuhn, M., Firth-Clark, S., Tosco, P., Mey, A. S., Mackey, M. D., & Michel, J. (2020). Assessment of binding affinity via alchemical free energy calculations. Journal of Chemical Information and Modeling, 60(6), 3120–3130. https://doi.org/10.1021/acs.jcim.0c00165
  • Li, H., Liu, L., Zhang, D., Xu, J., Dai, H., Tang, N., Su, X., & Cao, B. (2020). SARS-CoV-2 and viral sepsis: Observations and hypotheses. Lancet (London, England), 395(10235), 1517–1520. https://doi.org/10.1016/S0140-6736(20)30920-X
  • Li, X., Zhang, Z. H., Zabed, H. M., Yun, J., Zhang, G., & Qi, X. (2020). An insight into the roles of dietary tryptophan and its metabolites in intestinal inflammation and inflammatory bowel disease. Molecular Nutrition & Food Research, 65(5), 2000461.
  • Liang, X., Li, H., & Li, S. (2014). A novel network pharmacology approach to analyse traditional herbal formulae: The Liu-Wei-Di-Huang pill as a case study. Molecular bioSystems, 10(5), 1014–1022. https://doi.org/10.1039/c3mb70507b
  • Liu, J., Zhong, Y., Yang, Z., Cui, S., & Wang, F. (1989). Chemical constituents of Cordyceps mililaris (L.) Link. Zhongguo Zhong Yao za Zhi = Zhongguo Zhongyao Zazhi = China Journal of Chinese Materia Medica, 14(10), 608–609, 639.
  • Liu, T., Lin, Y., Wen, X., Jorissen, R. N., & Gilson, M. K. (2007). BindingDB: A web-accessible database of experimentally determined protein–ligand binding affinities. Nucleic Acids Research, 35(Database issue), D198–D201. https://doi.org/10.1093/nar/gkl999
  • Lv, Z.-M., Jiang, Y.-T., Wu, L.-J., & Liu, K. (2008). Chemical constituents from dried sorophore of cultured Cordyceps militaris. Zhongguo Zhong Yao za Zhi = Zhongguo Zhongyao Zazhi = China Journal of Chinese Materia Medica, 33(24), 2914–2917.
  • Ma, L., & Dorling, A. (2012). The roles of thrombin and protease-activated receptors in inflammation. Seminars in Immunopathology, 34(1), 63–72. https://doi.org/10.1007/s00281-011-0281-9
  • Martineau, A. R., & Forouhi, N. G. (2020). Vitamin D for COVID-19: A case to answer? The Lancet. Diabetes & Endocrinology, 8(9), 735–736. https://doi.org/10.1016/S2213-8587(20)30268-0
  • Merad, M., & Martin, J. C. (2020). Pathological inflammation in patients with COVID-19: A key role for monocytes and macrophages. Nature Reviews. Immunology, 20(6), 355–362. https://doi.org/10.1038/s41577-020-0331-4
  • Mering, C. v., Huynen, M., Jaeggi, D., Schmidt, S., Bork, P., & Snel, B. (2003). STRING: A database of predicted functional associations between proteins. Nucleic Acids Research, 31(1), 258–261. https://doi.org/10.1093/nar/gkg034
  • Mitchell, F. (2020). Vitamin-D and COVID-19: Do deficient risk a poorer outcome? The Lancet. Diabetes & Endocrinology, 8(7), 570. https://doi.org/10.1016/S2213-8587(20)30183-2
  • Morris, G., Bortolasci, C. C., Puri, B. K., Olive, L., Marx, W., O'Neil, A., Athan, E., Carvalho, A. F., Maes, M., Walder, K., & Berk, M. (2020). The pathophysiology of SARS-CoV-2: A suggested model and therapeutic approach. Life Sciences, 258, 118166. https://doi.org/10.1016/j.lfs.2020.118166
  • Müller, W. E., Weiler, B. E., Charubala, R., Pfleiderer, W., Leserman, L., Sobol, R. W., Suhadolnik, R. J., & Schröder, H. C. (1991). Cordycepin analogs of 2', 5'-oligoadenylate inhibit human immunodeficiency virus infection via inhibition of reverse transcriptase. Biochemistry, 30(8), 2027–2033. https://doi.org/10.1021/bi00222a004
  • Murakami, Y., Tripathi, L. P., Prathipati, P., & Mizuguchi, K. (2017). Network analysis and in silico prediction of protein–protein interactions with applications in drug discovery. Current Opinion in Structural Biology, 44, 134–142. https://doi.org/10.1016/j.sbi.2017.02.005
  • Nau, F., Jr, Yu, B., Martin, D., & Nichols, C. D. (2013). Serotonin 5-HT 2A receptor activation blocks TNF-α mediated inflammation in vivo. PloS One, 8(10), e75426. https://doi.org/10.1371/journal.pone.0075426
  • Novikov, F. N., Zeifman, A. A., Stroganov, O. V., Stroylov, V. S., Kulkov, V., & Chilov, G. G. (2011). CSAR scoring challenge reveals the need for new concepts in estimating protein–ligand binding affinity. Journal of Chemical Information and Modeling, 51(9), 2090–2096. https://doi.org/10.1021/ci200034y
  • Pandit, M., & Latha, N. (2020). In silico studies reveal potential antiviral activity of phytochemicals from medicinal plants for the treatment of COVID-19 infection.
  • Patwardhan, B., & Chandran, U. (2015). Network ethnopharmacology approaches for formulation discovery. Indian Journal for Traditional Knowledge, 14(4), 574–580. http://nopr.niscpr.res.in/handle/123456789/33019
  • Popović, M., Smiljanić, K., Dobutović, B., Syrovets, T., Simmet, T., & Isenović, E. R. (2012). Thrombin and vascular inflammation. Molecular and Cellular Biochemistry, 359(1-2), 301–313. https://doi.org/10.1007/s11010-011-1024-x
  • Raman, K. (2010). Construction and analysis of protein–protein interaction networks. Automated Experimentation, 2(1), 2. https://doi.org/10.1186/1759-4499-2-2
  • Rao, Y. K., Fang, S.-H., Wu, W.-S., & Tzeng, Y.-M. (2010). Constituents isolated from Cordyceps militaris suppress enhanced inflammatory mediator’s production and human cancer cell proliferation. Journal of Ethnopharmacology, 131(2), 363–367. https://doi.org/10.1016/j.jep.2010.07.020
  • Saha, A., & Saha, B. (2020). Novel coronavirus SARS‐CoV‐2 (Covid‐19) dynamics inside the human body. Reviews in Medical Virology, 30(5), e2140. https://doi.org/10.1002/rmv.2140
  • Sarkar, S., Khanna, P., & Soni, K. D. (2021). Are the steroids a blanket solution for COVID‐19? A systematic review and meta‐analysis. Journal of Medical Virology, 93(3), 1538–1547. https://doi.org/10.1002/jmv.26483
  • Shi, C., Wu, F., Zhu, X., & Xu, J. (2013). Incorporation of β-sitosterol into the membrane increases resistance to oxidative stress and lipid peroxidation via estrogen receptor-mediated PI3K/GSK3β signaling. Biochimica et Biophysica Acta, 1830(3), 2538–2544. https://doi.org/10.1016/j.bbagen.2012.12.012
  • Shrestha, B., Zhang, W., Zhang, Y., & Liu, X. (2012). The medicinal fungus Cordyceps militaris: Research and development. Mycological Progress, 11(3), 599–614. https://doi.org/10.1007/s11557-012-0825-y
  • Singh, A. K., Majumdar, S., Singh, R., & Misra, A. (2020). Role of corticosteroid in the management of COVID-19: A systemic review and a Clinician’s perspective. Diabetes & Metabolic Syndrome, 14(5), 971–978. https://doi.org/10.1016/j.dsx.2020.06.054
  • Solinas, C., Perra, L., Aiello, M., Migliori, E., & Petrosillo, N. (2020). A critical evaluation of glucocorticoids in the treatment of severe COVID-19. Cytokine & Growth Factor Reviews, 54, 8–23. https://doi.org/10.1016/j.cytogfr.2020.06.012
  • Soy, M., Keser, G., Atagündüz, P., Tabak, F., Atagündüz, I., & Kayhan, S. (2020). Cytokine storm in COVID-19: Pathogenesis and overview of anti-inflammatory agents used in treatment. Clinical Rheumatology, 39(7), 2085–2094. https://doi.org/10.1007/s10067-020-05190-5
  • Stahn, C., & Buttgereit, F. (2008). Genomic and nongenomic effects of glucocorticoids. Nature Clinical Practice. Rheumatology, 4(10), 525–533. https://doi.org/10.1038/ncprheum0898
  • Stahn, C., Löwenberg, M., Hommes, D. W., & Buttgereit, F. (2007). Molecular mechanisms of glucocorticoid action and selective glucocorticoid receptor agonists. Molecular and Cellular Endocrinology, 275(1-2), 71–78. https://doi.org/10.1016/j.mce.2007.05.019
  • Stroganov, O. V., Novikov, F. N., Stroylov, V. S., Kulkov, V., & Chilov, G. G. (2008). Lead finder: An approach to improve accuracy of protein − ligand docking, binding energy estimation, and virtual screening. Journal of Chemical Information and Modeling, 48(12), 2371–2385. https://doi.org/10.1021/ci800166p
  • Sun, J., Jin, M., Zhou, W., Diao, S., Zhou, Y., Li, S., Wang, X., Pan, S., Jin, X., & Li, G. (2017). A new ribonucleotide from Cordyceps militaris. Natural Product Research, 31(21), 2537–2543. https://doi.org/10.1080/14786419.2017.1323210
  • Szklarczyk, D., Morris, J. H., Cook, H., Kuhn, M., Wyder, S., Simonovic, M., Santos, A., Doncheva, N. T., Roth, A., Bork, P., Jensen, L. J., & von Mering, C. (2017). The STRING database in 2017: Quality-controlled protein–protein association networks, made broadly accessible. Nucleic Acids Research, 45(D1), D362–D368. https://doi.org/10.1093/nar/gkw937
  • Taha, M., Sharma, A., Taha, M., & Samavati, L. (2020). Coronavirus disease 2019 in immunocompromised organ transplant recipients: a case report and review of the literature. Transplantation Proceedings, 52(9), 2698–2702. https://doi.org/10.1016/j.transproceed.2020.07.014
  • Takano, H. (2020). Pulmonary surfactant itself must be a strong defender against SARS-CoV-2. Medical Hypotheses, 144, 110020. https://doi.org/10.1016/j.mehy.2020.110020
  • Tay, M. Z., Poh, C. M., Rénia, L., MacAry, P. A., & Ng, L. F. (2020). The trinity of COVID-19: Immunity, inflammation and intervention. Nature Reviews. Immunology, 20(6), 363–374. https://doi.org/10.1038/s41577-020-0311-8
  • Wang, Y., Kumar, N., Solt, L. A., Richardson, T. I., Helvering, L. M., Crumbley, C., Garcia-Ordonez, R. D., Stayrook, K. R., Zhang, X., Novick, S., Chalmers, M. J., Griffin, P. R., & Burris, T. P. (2010). Modulation of retinoic acid receptor-related orphan receptor α and γ activity by 7-oxygenated sterol ligands. The Journal of Biological Chemistry, 285(7), 5013–5025. https://doi.org/10.1074/jbc.M109.080614
  • Wang, Y., Wang, Y., Chen, Y., & Qin, Q. (2020). Unique epidemiological and clinical features of the emerging 2019 novel coronavirus pneumonia (COVID‐19) implicate special control measures. Journal of Medical Virology, 92(6), 568–576. https://doi.org/10.1002/jmv.25748
  • Won, S.-Y., & Park, E.-H. (2005). Anti-inflammatory and related pharmacological activities of cultured mycelia and fruiting bodies of Cordyceps militaris. Journal of Ethnopharmacology, 96(3), 555–561. https://doi.org/10.1016/j.jep.2004.10.009
  • Xu, J., Wei, K., Zhang, G., Lei, L., Yang, D., Wang, W., Han, Q., Xia, Y., Bi, Y., Yang, M., & Li, M. (2018). Ethnopharmacology, phytochemistry, and pharmacology of Chinese Salvia species: A review. Journal of Ethnopharmacology, 225, 18–30. https://doi.org/10.1016/j.jep.2018.06.029
  • Yu, H., Kim, P. M., Sprecher, E., Trifonov, V., & Gerstein, M. (2007). The importance of bottlenecks in protein networks: Correlation with gene essentiality and expression dynamics. PLoS Computational Biology, 3(4), e59. https://doi.org/10.1371/journal.pcbi.0030059
  • Yu, R., Song, L., Zhao, Y., Bin, W., Wang, L., Zhang, H., Wu, Y., Ye, W., & Yao, X. (2004). Isolation and biological properties of polysaccharide CPS-1 from cultured Cordyceps militaris. Fitoterapia, 75(5), 465–472. https://doi.org/10.1016/j.fitote.2004.04.003
  • Yu, R., Yang, W., Song, L., Yan, C., Zhang, Z., & Zhao, Y. (2007). Structural characterization and antioxidant activity of a polysaccharide from the fruiting bodies of cultured Cordyceps militaris. Carbohydrate Polymers, 70(4), 430–436. https://doi.org/10.1016/j.carbpol.2007.05.005

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.