Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 24, 2007 - Issue 5
178
Views
29
CrossRef citations to date
0
Altmetric
Original

Effect of Restricted Feeding Schedule on Seasonal Shifting of Daily Demand‐Feeding Pattern and Food Anticipatory Activity in European Sea Bass (Dicentrarchus labrax L.)

, , , , &
Pages 859-874 | Received 13 Mar 2007, Accepted 12 Jul 2007, Published online: 07 Jul 2009

References

  • Anthouard M, Kentouri M, Divanach P. An analysis of feeding activities of sea‐bass (Dicentrarchus labrax, Moronidae), raised under different lighting conditions. Ichtyophysiol. Acta 1993; 16: 59–73
  • Aranda A, Madrid J A, Zamora S, Sánchez‐Vázquez F J. Synchronizing effect of photoperiod on the dual phasing of demand‐feeding rhythms in sea bass. Biol. Rhythm Res. 1999a; 30: 392–406
  • Aranda A, Sánchez‐Vázquez F J, Madrid J A. Influence of water temperature on demand‐feeding rhythms in sea bass. J. Fish Biol. 1999b; 55: 1029–1039
  • Aranda A, Madrid J A, Sánchez‐Vázquez F J. Influence of light on feeding anticipatory activity in goldfish. J. Biol. Rhythms 2001; 16: 50–57
  • Aschoff J. Anticipation of a daily meal: a process of “learning” due to entrainment. Mon. Zool. Ital. 1986; 20: 195–219
  • Azzaydi M, Madrid J A, Zamora S, Sánchez‐Vázquez F J, Martínez F J. Effect of three feeding strategies (automatic, ad libitum demand‐feeding and time‐restricted demand‐feeding) on feeding rhythms and growth in European sea bass (Dicentrarchus labrax L.). Aquaculture 1998; 163: 285–296
  • Azzaydi M, Martínez F J, Zamora S, Sánchez‐Vázquez F J, Madrid J A. Effect of meal size modulation on growth performance and feeding rhythms in European sea bass (Dicentrarchus labrax, L.). Aquaculture 1999; 170: 253–266
  • Azzaydi M, Martínez F J, Zamora S, Sánchez‐Vázquez F J, Madrid J A. The influence of nocturnal vs. diurnal feeding under winter conditions on growth and feed conversion of European sea bass (Dicentrarchus labrax, L.). Aquaculture 2000; 182: 329–338
  • Bolliet V, Aranda A, Boujard T. Demand‐feeding rhythm in rainbow trout and catfish synchronisation by photoperiod and food availability. Physiol. Behav. 2001; 73: 625–633
  • Boujard T, Jourdan M, Kentouri M, Divanach P. Diel feeding activity and the effect of time‐restricted self‐feeding on growth and feed conversion in European sea bass. Aquaculture 1996; 139: 117–127
  • Boulos Z, Terman M. Food availability and daily biological rhythms. Neurosci. Biobehav. Rev. 1980; 4: 119–131
  • Brännäs E, Berglund U, Eriksson L‐O. Time learning and anticipatory activity in groups of Arctic charr. Ethology 2005; 111: 681–692
  • Chen W‐M, Purser G J. The effect of feeding regime on growth, locomotor activity pattern and the development of food anticipatory activity in greenback flounder. J. Fish Biol. 2001; 58: 177–187
  • Chen W‐M, Tabata M. Individual rainbow trout can learn and anticipate multiple daily feeding times. J. Fish Biol. 2002; 61: 1410–1422
  • Comperatore C A, Stephan F K. Entrainment of duodenal activity to periodic feeding. J. Biol. Rhythms 1987; 2: 227–242
  • Covès D, Beauchaud M, Attia J, Dutto G, Bouchut C, Bégout M L. Long‐term monitoring of individual fish triggering activity on a self‐feeding system: An example using European sea bass (Dicentrarchus labrax). Aquaculture 2006; 253: 385–392
  • Davis R E. Daily “predawn” peak of locomotion in fish. Anim. Behav. 1963; 12: 272–283
  • Davis R E, Bardach J E. Time‐co‐ordinated prefeeding activity in fish. Anim. Behav. 1965; 8: 154–162
  • Di‐Poï C, Attia J, Bouchut C, Dutto G, Covès D, Beauchaud M. Behavioral and neurophysiological responses of European sea bass groups reared under food constraint. Physiol. Behav. 2007; 90: 559–566
  • Edmonds S C, Adler N T. The multiplicity of biological oscillators in the control of circadian running activity in the rat. Physiol. Behav. 1994; 18: 921–930
  • Eriksson L O. Nocturnalism versus diurnalism‐dualism within individuals. Rhythmic Activity of Fishes, J E Thorpe. Academic Press, London 1978; 69–89
  • Gallistel C R. The Organization of Learning. MIT Press, Cambridge 1990; 662
  • Gee P, Stephenson D, Weight D E. Temporal discrimination learning of operant feeding in goldfish (Carassius auratus). J. Exp. Anal. Behav. 1994; 62: 1–13
  • Helfman G S. Fish behaviour by day, night and twilight. The Behaviour of Teleost Fishes, T J Pitcher. Croom Helm Ltd., London 1986; 366–387
  • Herrero M J, Pascual M, Madrid J A, Sánchez‐Vázquez F J. Demand‐feeding rhythms and feeding‐entrainment of locomotor activity rhythms in tench (Tinca tinca). Physiol. Behav. 2005; 84: 595–605
  • Jilge B, Sta¨hle H. Restricted food access and light-dark: Impact of conflicting zeitgebers on circadian rhythms of the rabbit. Am. J. Physiol. 1993; 264: R708–R715
  • Juell J E, Furevik D M, Bjordal A. Demand feeding in salmon farming by hydroacoustic food detection. Aquacult. Eng. 1993; 12: 155–167
  • Lague M, Reebs S G. Food‐anticipatory activity of groups of golden shiners during both day and night. Can. J. Zool. 2000a; 78: 886–889
  • Lague M, Reebs S G. Phase‐shifting the light–dark cycle influences food‐anticipatory activity in golden shiners. Physiol. Behav. 2000b; 70: 55–59
  • Madrid J A, Azzaydi M, Zamora S, Sánchez‐Vázquez F J. Continuous recording of uneaten food pellets and demand‐feeding activity: a new approach to studying feeding rhythms in fish. Physiol. Behav. 1997; 62: 689–695
  • Madrid J A, Boujard T, Sánchez‐Vázquez F J. Feeding rhythms. Food Intake in Fish, D Houlihan, T Boujard, M Jobling. Blackwell Science Ltd., London 2001; 189–215
  • Mrosovsky N, Boshes M, Hallonquist J D, Lang K. Circannual cycle of circadian cycles in a golden‐mantled ground squirrel. Naturwissenschaften. 1976; 63: 298–299
  • Naruse M, Oishi T. Effects of light and food as zeitgebers on locomotor activity rhythms in the loach. Misgurnus anguillicaudatus. Zool. Sci. 1994; 11: 113–119
  • Pickett G D, Pawson M G. Sea Bass. Biology, Exploitation and Conservation. Chapman & Hall, London 1994; 337
  • Purser G J, Chen W‐M. The effect of meal size and meal duration on food anticipatory activity in greenback flounder. J. Fish Biol. 2001; 58: 188–200
  • Reebs S G. Time‐place learning in golden shiners (Pisces: Cyprinidae). Behav. Process. 1996; 36: 253–262
  • Reebs S G. Time‐place learning based on food but not on predation risk in a fish, the inanga (Galaxias maculatus). Ethology 1999; 105: 361–371
  • Reebs S G. Plasticity of diel and circadian activity rhythms in fishes. Rev. Fish Biol. Fish. 2002; 12: 349–371
  • Reebs S G, Gallant B. Food‐anticipatory activity as a cue for local enhancement in golden shiners (Pisces: Cyprinidae, Notemigonus crysoleucas). Ethology 1997; 103: 1060–1069
  • Reebs S G, Lague M. Daily food‐anticipatory activity in golden shiners: A test of endogenous timing mechanisms. Physiol. Behav. 2000; 70: 35–43
  • Richter C PA. A behaviouristic study of the activity of the rat. Comp. Psychol. Monogr. 1922; 1: 1–55
  • Rubio V C, Sánchez‐Vázquez F J, Madrid J A. Nocturnal feeding reduces sea bass (Dicentrarchus labrax, L.) pellet‐catching ability. Aquaculture 2003; 220: 697–705
  • Rubio V C, Vivas M, Sánchez‐Mut A, Sánchez‐Vázquez F J, Covès D, Dutto G, Madrid J A. Self‐feeding of European sea bass (Dicentrarchus labrax, L.) under laboratory and farming conditions using a string sensor. Aquaculture 2004; 233: 393–403
  • Sánchez‐Vázquez F J, Martínez M, Zamora S, Madrid J A. Design and performance of an accurate demand feeder for the study of feeding behaviour in sea bass, Dicentrarchus labrax L. Physiol. Behav. 1994; 56: 789–794
  • Sánchez‐Vázquez F J, Madrid J A, Zamora S. Circadian rhythms of feeding activity in sea bass (Dicentrarchus labrax, L.): Dual phasing capacity of diel demand‐feeding pattern. J. Biol. Rhythms 1995a; 10: 256–266
  • Sánchez‐Vázquez F J, Zamora S, Madrid J A. Light‐dark and food restriction cycles in sea bass: effect of conflicting zeitgebers on demand‐feeding rhythms. Physiol. Behav. 1995b; 58: 705–714
  • Sánchez‐Vázquez F J, Madrid J A, Zamora S, Tabata M. Feeding entrainment of locomotor activity rhythms in the goldfish is mediated by a feeding‐entrainable circadian oscillator. J. Comp. Physiol. A 1997; 181: 121–132
  • Sánchez‐Vázquez F J, Azzaydi M, Martínez F J, Zamora S, Madrid J A. Annual rhythms of demand‐feeding activity in sea bass: evidence of a seasonal phase inversion of the diel feeding pattern. Chronobiol. Int. 1998; 15: 607–622
  • Sánchez‐Vázquez F J, Aranda A, Madrid J A. Differential effects of meal size and food energy density on feeding entrainment in goldfish. J. Biol. Rhythms 2001; 16: 58–65
  • Spieler R E. Feeding‐entrained circadian rhythms in fishes. Rhythms in Fishes, M A Ali. Plenum Press, New York 1992; 137–147
  • Spieler R E, Noeske T A. Effects of photoperiod and feeding schedule on diel variations of locomotor activity, cortisol, and thyroxine in goldfish. Trans. Am. Fish. Soc. 1984; 113: 528–539
  • Stephan F K. Interaction between light- and feeding-entrainable circadian rhythms in the rat. Physiol. Behav. 1986; 38: 127–133
  • Touitou Y, Smolensky M H, Portaluppi F. Ethics, standards, and procedures of animal and human chronobiology research. Chronobiol. Int. 2006; 23: 1083–1096
  • Velázquez M, Zamora S, Martínez F J. Influence of environmental conditions on demand‐feeding behaviour of gilthead seabream (Sparus aurata). J. Appl. Ichthyol. 2004; 20: 536–541
  • Velázquez M, Zamora S, Martínez F J. Effect of dietary energy content on gilthead sea bream (Sparus aurata) feeding behaviour and nutritional use of the diet. Aquacult. Nutr. 2006; 12: 127–133
  • Vera L M, De Pedro N, Gómez‐Milán E, Delgado M J, Sánchez‐Muros M J, Madrid J A, Sánchez‐Vázquez F J. Feeding entrainment of locomotor activity rhythms, digestive enzymes and neuroendocrine factors in goldfish. Physiol. Behav. 2007; 90: 518–524

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.