Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 26, 2009 - Issue 1
145
Views
28
CrossRef citations to date
0
Altmetric
Short Communication

Casein Kinase‐1‐Epsilon (CK1ε) and Circadian Photic Responses in Hamsters

, , &
Pages 126-133 | Received 28 Jul 2008, Accepted 22 Sep 2008, Published online: 07 Jul 2009

References

  • Agostino P V, Plano S A, Golombek D A. Sildenafil accelerates reentrainment of circadian rhythms after advancing light schedules. Proc. Natl. Acad. Sci. USA 2007; 104: 9834–9839
  • Akashi M, Tsuchiya Y, Yoshino T, Nishida E. Control of intracellular dynamics of mammalian period proteins by casein kinase I epsilon (CK1epsilon) and CK1delta in cultured cells. Mol. Cell. Biol. 2002; 22: 1693–1703
  • Badura L, Swanson T, Adamowicz W, Adams J, Cianfrogna J, Fisher K, Holland J, Kleiman R, Nelson F, Reynolds L, St. Germain K, Schaeffer E, Tate B, Sprouse J. An inhibitor of casein kinase 1 epsilon induces phase delays in circadian rhythms under free‐running and entrained conditions. J. Pharmacol. Exp. Ther. 2007; 322: 730–738
  • Butcher G Q, Dziema H, Collamore M, Burgoon P W, Obrietan K. The p42/44 mitogen‐activated protein kinase pathway couples photic input to circadian clock entrainment. J. Biol. Chem. 2002; 277: 29519–29525
  • Butcher G Q, Lee B, Cheng H Y, Obrietan K. Light stimulates MSK1 activation in the suprachiasmatic nucleus via a PACAP‐ERK/MAP kinase‐dependent mechanism. J. Neurosci. 2005; 25: 5305–5313
  • Chergui K, Svenningsson P, Greengard P. Physiological role for casein kinase 1 in glutamatergic synaptic transmission. J. Neurosci. 2005; 25: 6601–6609
  • Cox D R. Some procedures connected with the logistic qualitative response curve. Research papers in statistics, F N David. John Wiley and Sons, New York 1966; 55–71
  • Dardente H, Cermakian N. Molecular circadian rhythms in central and peripheral clocks in mammals. Chronobiol. Int. 2007; 24: 195–213
  • Dey J, Carr A J, Cagampang F R, Semikhodskii A S, Loudon A S, Hastings M H, Maywood E S. The tau mutation in the Syrian hamster differentially reprograms the circadian clock in the SCN and peripheral tissues. J. Biol. Rhythms 2005; 20: 99–110
  • Edelstein K, de la Iglesia H O, Schwartz W J, Mrosovsky N. Behavioral arousal blocks light‐induced phase advances in locomotor rhythmicity but not light‐induced Per1 and Fos expression in the hamster suprachiasmatic nucleus. Neuroscience 2003; 118: 253–261
  • Eide E J, Vielhaber E L, Hinz W A, Virshup D M. The circadian regulatory proteins BMAL1 and cryptochromes are substrates of casein kinase I epsilon. J. Biol. Chem. 2002; 277: 17248–17254
  • Eide E J, Woolf M F, Kang H, Woolf P, Hurst W, Camacho F, Vielhaber E L, Giovanni A, Virshup D M. Control of mammalian circadian rhythm by CK1epsilon‐regulated proteasome‐mediated PER2 degradation. Mol. Cell. Biol. 2005; 25: 2795–2807
  • Gallego M, Eide E J, Woolf M F, Virshup D M, Forger D B. An opposite role for tau in circadian rhythms revealed by mathematical modeling. Proc. Natl. Acad. Sci. USA 2006; 103: 10618–10623
  • Golombek D A, Ferreyra G A, Agostino P V, Murad A D, Rubio M F, Pizzio G A, Katz M E, Marpegan L, Bekinschtein T A. From light to genes: Moving the hands of the circadian clock. Front. Biosci. 2003; 8: s285–s293
  • Golombek D A, Agostino P V, Plano S A, Ferreyra G A. Signaling in the mammalian circadian clock: The NO/cGMP pathway. Neurochem. Int. 2004; 45: 929–936
  • Ko C H, Takahashi J S. Molecular components of the mammalian circadian clock. Hum. Mol. Genet. 2006; 15: R271–R277
  • Lee C, Etchegaray J P, Cagampang F R, Loudon A S, Reppert S M. Posttranslational mechanisms regulate the mammalian circadian clock. Cell 2001; 107: 855–867
  • Lowrey P L, Takahashi J S. Genetics of the mammalian circadian system: Photic entrainment, circadian pacemaker mechanisms, and posttranslational regulation. Ann. Rev. Genet. 2000; 34: 533–562
  • Lowrey P L, Shimomura K, Antoch M P, Yamazaki S, Zemenides P D, Ralph M R, Menaker M, Takahashi J S. Positional syntenic cloning and functional characterization of the mammalian circadian mutation tau. Science 2000; 288: 483–492
  • Meng Q J, Logunova L, Maywood E S, Gallego M, Lebiecki J, Brown T M, Sládek M, Semikhodskii A S, Glossop N R, Piggins H D, Chesham J E, Bechtold D A, Yoo S H, Takahashi J S, Virshup D M, Boot‐Handford R P, Hastings M H, Loudon A S. Setting clock speed in mammals: The CK1 epsilon tau mutation in mice accelerates circadian pacemakers by selectively destabilizing PERIOD proteins. Neuron 2008; 58: 78–88
  • Morin L P, Allen C N. The circadian visual system, 2005. Brain Res. Rev. 2006; 51: 1–60
  • Obrietan K, Impey S, Storm D R. Light and circadian rhythmicity regulate MAP kinase activation in the suprachiasmatic nuclei. Nat. Neurosci. 1998; 1: 693–700
  • Osiel S, Golombek D A, Ralph M R. Conservation of locomotor behavior in the golden hamster: Effects of light cycle and a circadian period mutation. Physiol. Behav. 1998; 65: 123–131
  • Panda S, Sato T K, Castrucci A M, Rollag M D, DeGrip W J, Hogenesch J B, Provencio I, Kay S A. Melanopsin (Opn4) requirement for normal light‐induced circadian phase shifting. Science 2002; 298: 2213–2216
  • Pittendrigh C S. Circadian systems: Entrainment. Handbook of behavioral neurobiology, biological rhythms, J Aschoff. Plenum Press, New York 1981; 95–124
  • Portaluppi F, Touitou Y, Smolensky M H. Ethical and methodological standards for laboratory and medical biological rhythm research. Chronobiol. Int. 2008; 25: 999–1016
  • Ralph M R, Menaker M. A mutation of the circadian system in golden hamsters. Science 1988; 241: 1225–1227
  • Shimomura K, Menaker M. Light‐induced phase shifts in tau mutant hamsters. J. Biol. Rhythms 1994; 9: 97–110
  • Spoelstra K, Albrecht U, van der Horst G T, Brauer V, Daan S. Phase responses to light pulses in mice lacking functional per or cry genes. J. Biol. Rhythms 2004; 19: 518–529
  • Toh K L, Jones C R, He Y, Eide E J, Hinz W A, Virshup D M, Ptacek L J, Fu Y H. An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science 2001; 291: 1040–1043
  • Vitaterna M H, Ko C H, Chang A M, Buhr E D, Fruechte E M, Schook A, Antoch M P, Turek F W, Takahashi J S. The mouse Clock mutation reduces circadian pacemaker amplitude and enhances efficacy of resetting stimuli and phase‐response curve amplitude. Proc. Natl. Acad. Sci. USA 2006; 103: 9327–9332
  • Vuillez P, Jacob N, Teclemariam‐Mesbah R, Van Rossum A, Vivien‐Roels B, Pévet P. Effect of NMDA receptor antagonist MK‐801 on light‐induced Fos expression in the suprachiasmatic nuclei and on melatonin production in the Syrian hamster. J. Neuroendocrinol. 1998; 10: 671–677
  • Xu Y, Padiath Q S, Shapiro R E, Jones C R, Wu S C, Saigoh N, Saigoh K, Ptacek L J, Fu Y H. Functional consequences of a CK1delta mutation causing familial advanced sleep phase syndrome. Nature 2005; 434: 640–644

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.