Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 26, 2009 - Issue 2
491
Views
46
CrossRef citations to date
0
Altmetric
Original

The Nocturnal Activity of Fruit Flies Exposed to Artificial Moonlight Is Partly Caused by Direct Light Effects on the Activity Level That Bypass the Endogenous Clock

, , &
Pages 151-166 | Received 05 Sep 2008, Accepted 16 Oct 2008, Published online: 07 Jul 2009

References

  • Allada R, White N E, So W V, Hall J C, Rosbash M. A mutant Drosophila homolog of mammalian Clock disrupts circadian rhythms and transcription of period and timeless. Cell 1998; 93: 791–804
  • Aschoff J. Circadian rhythms: influences of internal and external factors on the period measured in constant conditions. Z. Tierpsychol. 1979; 49: 225–249
  • Aschoff J, von Goetz C. Masking of circadian activity rhythms in canaries by light and dark. J. Biol. Rhythms 1989; 4: 29–38
  • Aschoff J, Daan S, Homna K‐I. Zeitgebers, eintrainment, and masking: Some unsettled questions. Vertebrate circadian systems, structure and physiology, J Aschoff, S Daan, G A Groos. Springer-Verlag, HeidelbergGermany 1982; 13–24
  • Ashmore L J, Sathyanarayanan S, Silvestre D W, Emerson M M, Schotland P, Sehgal A. Novel insights into the regulation of the timeless protein. J. Neurosci. 2003; 23: 7810–7819
  • Bachleitner W, Kempinger L, Wulbeck C, Rieger D, Helfrich‐Förster C. Moonlight shifts the endogenous clock of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 2007; 104: 3538–3543
  • Badia P, Myers B, Boecker M, Culpepper J, Harsh J R. Bright light effects on body temperature, alertness, EEG and behavior. Physiol. Behav. 1991; 50: 583–588
  • Binkley S, Mosher K. Direct and circadian control of sparrow behavior by light and dark. Physiol. Behav. 1985; 35: 785–797
  • Brainard G C, Rollag M D, Hanifin J P. Photic regulation of melatonin in humans: Ocular and neural signal transduction. J. Biol. Rhythms 1997; 12: 537–546
  • Cajochen C, Dijk D J, Borbely A A. Dynamics of EEG slow‐wave activity and core body temperature in human sleep after exposure to bright light. Sleep 1992; 15: 337–343
  • Cajochen C, Zeitzer J M, Czeisler C A, Dijk D J. Dose‐response relationship for light intensity and ocular and electroencephalographic correlates of human alertness. Behav. Brain Res. 2000; 115: 75–83
  • Cajochen C, Munch M, Kobialka S, Krauchi K, Steiner R, Oelhafen P, Orgul S, Wirz‐Justice A. High sensitivity of human melatonin, alertness, thermoregulation, and heart rate to short wavelength light. J. Clin. Endocrinol. Metab. 2005; 90: 1311–1316
  • Collins B H, Dissel S, Gaten E, Rosato E, Kyriacou C P. Disruption of cryptochrome partially restores circadian rhythmicity to the arrhythmic period mutant of Drosophila. Proc. Natl. Acad. Sci. USA 2005; 102: 19021–19026
  • Darlington T K, Wager‐Smith K, Ceriani M F, Staknis D, Gekakis N, Steeves T D, Weitz C J, Takahashi J S, Kay S A. Closing the circadian loop: CLOCK‐induced transcription of its own inhibitors per and tim. Science 1998; 280: 1599–1603
  • Dijk D J, Cajochen C, Borbely A A. Effect of a single three‐hour exposure to bright light on core body temperature and sleep in humans. Neurosci. Lett. 1991; 121: 59–62
  • Erkert H G, Cramer B. Chronobiological background to cathemerality: Circadian rhythms in Eulemur fulvus albifrons (Prosimii) and Aotus azarai boliviensis (Anthropoidea). Folia Primatol. (Basel) 2006; 77: 87–103
  • Erkert H G, Gröber J. Direct modulation of activity and body temperature of owl monkeys (Aotus lemurinus griseimembra) by low light intensities. Folia Primatol. (Basel) 1986; 47: 171–188
  • Erkert H G, Gburek V, Scheideler A. Photic entrainment and masking of prosimian circadian rhythms (Otolemur garnettii, Primates). Physiol. Behav. 2006; 88: 39–46
  • Fernandez‐Duque E, Erkert H G. Cathemerality and lunar periodicity of activity rhythms in owl monkeys of the Argentinian Chaco. Folia Primatol. (Basel) 2006; 77: 123–138
  • Fleissner G, Schuchardt K, Neumann D, Bali G, Falkenberg G, Fleissner G. A lunar clock changes shielding pigment transparency in larval ocelli of Clunio marinus. Chronobiol. Int. 2008; 25: 17–30
  • Gander P H, Moore‐Ede M C. Light‐dark masking of circadian temperature and activity rhythms in squirrel monkeys. Am. J. Physiol. 1983; 245: R927–R934
  • Helfrich C, Engelmann W. Evidences for circadian rhythmicity in the per0 mutant of Drosophila melanogaster. Z. Naturforsch. [C] 1987; 42: 1335–1338
  • Helfrich‐Förster C. Robust circadian rhythmicity of Drosophila melanogaster requires the presence of lateral neurons: A brain‐behavioral study of disconnected mutants. J. Comp. Physiol. [A] 1998; 182: 435–453
  • Helfrich‐Förster C. Differential control of morning and evening components in the activity rhythm of Drosophila melanogaster—sex‐specific differences suggest a different quality of activity. J. Biol. Rhythms 2000; 15: 135–154
  • Helfrich‐Förster C. The locomotor activity rhythm of Drosophila melanogster is controlled by a dual oscillator system. J. Insect Physiol. 2001; 47: 877–887
  • Helfrich‐Förster C, Tauber M, Park J H, Mühlig‐Versen M, Schneuwly S, Hofbauer A. Ectopic expression of the neuropeptide pigment‐dispersing factor alters behavioral rhythms in Drosophila melanogaster. J. Neurosci. 2000; 20: 3339–3353
  • Helfrich‐Förster C, Edwards T, Yasuyama K, Wisotzki B, Schneuwly S, Stanewsky R, Meinertzhagen I A, Hofbauer A. The extraretinal eyelet of Drosophila: development, ultrastructure, and putative circadian function. J. Neurosci. 2002a; 22: 9255–9266
  • Helfrich‐Förster C, Wulf J, De Belle S. Mushroom body influence on locomotor activity and circadian rhythms in Drosophila melanogaster. J. Neurogenet. 2002b; 16: 73–109
  • Kappeler P, Erkert H. On the move around the clock: Correlates and determinants of catemeral activity in wild redfronted lemurs (Eulemur fulvus rufus). Behavior, Ecology and Sociobiology 2003; 54: 359–369
  • Konopka R J, Benzer S. Clock mutants of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 1971; 68: 2112–2116
  • Konopka R J, Pittendrigh C, Orr D. Reciprocal behaviour associated with altered homeostasis and photosensitivity of Drosophila clock mutants. J. Neurogenet. 1989; 6: 1–10
  • Merrow M, Brunner M, Roenneberg T. Assignment of circadian function for the Neurospora clock gene frequency. Nature 1999; 399: 584–586
  • Meyer P, Saez L, Young M W. PER‐TIM interactions in living Drosophila cells: An interval timer for the circadian clock. Science 2006; 311: 226–229
  • Mrosovsky N. Masking: history, definitions, and measurement. Chronobiol. Int. 1999; 16: 415–429
  • Munoz‐Delgado J, Corsi‐Cabrera M, Canales‐Espinosa D, Santillan‐Doherty A M, Erkert H G. Astronomical and meteorological parameters and rest‐activity rhythm in the spider monkey Ateles geoffroyi. Physiol. Behav. 2004; 83: 107–117
  • Park J H, Helfrich‐Förster C, Lee G, Liu L, Rosbash M, Hall J C. Differential regulation of circadian pacemaker output by separate clock genes in Drosophila. Proc. Natl. Acad. Sci. USA. 2000; 97: 3608–3613
  • Portaluppi F, Touitou Y, Smolensky M H. Ethical and metholodological standards for laboratory and medical biological rhythm research. Chronobiol. Int. 2008; 25: 999–1016
  • Rieger D, Fraunholz C, Popp J, Bichler D, Dittmann R, Helfrich‐Förster C. The fruit fly Drosophila melanogaster favors dim light and times its activity peaks to early dawn and late dusk. J. Biol. Rhythms 2007; 22: 387–399
  • Rutila J E, Suri V, Le M, So W V, Rosbash M, Hall J C. CYCLE is a second bHLH‐PAS clock protein essential for circadian rhythmicity and transcription of Drosophila period and timeless. Cell 1998; 93: 805–814
  • Saez L, Young M W. Regulation of nuclear entry of the Drosophila clock proteins period and timeless. Neuron 1996; 17: 911–920
  • Scheer F A, Van Doornen L J, Buijs R M. Light and diurnal cycle affect autonomic cardiac balance in human: Possible role for the biological clock. Auton. Neurosci. 2004; 110: 44–48
  • Sehgal A, Price J L, Man B, Young M W. Loss of circadian behavioral rhythms and per RNA oscillations in the Drosophila mutant timeless. Science 1994; 263: 1603–1606
  • Shafer O T, Rosbash M, Truman J W. Sequential nuclear accumulation of the clock proteins period and timeless in the pacemaker neurons of Drosophila melanogaster. J. Neurosci. 2002; 22: 5946–5954
  • Tattersall I. The concept of cathemerality: History and definition. Folia Primatol. (Basel) 2006; 77: 7–14
  • Vosshall L B, Price J L, Sehgal A, Saez L, Young M W. Block in nuclear localization of period protein by a second clock mutation timeless. Science 1994; 263: 1606–1609
  • Wheeler D A, Hamblen‐Coyle M J, Dushay M S, Hall J C. Behavior in light‐dark cycles of Drosophila mutants that are arrhythmic, blind, or both. J. Biol. Rhythms 1993; 8: 67–94
  • Yoshii T, Sakamoto M, Tomioka K. A temperature‐dependent timing mechanism is involved in the circadian system that drives locomotor rhythms in the fruit fly Drosophila melanogaster. Zoolog. Sci. 2002; 19: 841–850

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.