Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 26, 2009 - Issue 2
443
Views
37
CrossRef citations to date
0
Altmetric
Original

Zebrafish Temperature Selection and Synchronization of Locomotor Activity Circadian Rhythm to Ahemeral Cycles of Light and Temperature

&
Pages 200-218 | Received 19 Jun 2008, Accepted 12 Nov 2008, Published online: 07 Jul 2009

References

  • Aranda A, Sánchez‐Vázquez F J, Madrid J A. Influence of water temperature on demand‐feeding rhythms in sea bass. J. Fish Biol. 1999; 55: 1029–1039
  • Barrett R K, Takahashi J S. Temperature compensation and temperature entrainment of the chick pineal cell circadian clock. J. Neurosci. 1995; 15: 5681–5692
  • Bolliet V, Bégay V, Ravault J P, Ali M A, Collin J P, Falcón J. Multiple circadian oscillators in the photosensitive pike pineal gland: A study using organ and cell culture. J. Pineal Res. 1994; 16: 77–84
  • Cahill G M. Clock mechanisms in zebrafish. Cell Tissue Res. 2002; 309: 27–34
  • Emens J S, Lewy A J, Lefler B J, Sack R L. Relative coordination to unknown “weak zeitgebers” in free‐running blind individuals. J. Biol. Rhythms 2005; 20: 159–167
  • Enright J T. Temperature and the free‐running circadian rhythm of the house finch. Comp. Biochem. Physiol. 1966; 18: 463–475
  • Eriksson L O. Nocturnalism versus diurnalism—dualism within fish individuals. Rhythmic activity of fishes, J E Thorpe. Academic Press, London 1978; 69–90
  • Evans K J. Responses of the locomotor activity rhythms of lizards to simultaneous light and temperature cycles. Comp. Biochem. Physiol. 1966; 19: 91–103
  • García‐Allegue R, Madrid J A, Sánchez‐Vázquez F J. Melatonin rhythms in European sea bass plasma and eye: Influence of seasonal photoperiod and water temperature. J. Pineal Res. 2001; 31: 68–75
  • Gibson R N, Pihl L, Burrows M T, Modin J, Wennhage H, Nickell L A. Diel movements of juvenile plaice Pleuronectes platessa in relation to predators, competitors, food availability and abiotic factors on a microtidal nursery ground. Mar. Ecol. Prog. Ser. 1998; 165: 145–159
  • Greenwood M FD, Metcalfe N B. Minnows become nocturnal at low temperatures. J. Fish Biol. 1998; 53: 25–32
  • Hurd M W, Cahill G M. Entraining signals initiate behavioural circadian rhythmicity in larval zebrafish. J. Biol. Rhythms 2002; 17: 307–314
  • Hurd M W, Debruyne J, Straume M, Cahill G M. Circadian rhythms of locomotor activity in zebrafish. Physiol. Behav. 1998; 65: 465–472
  • Johnson C H, Elliott J, Foster R, Honma K, Kronauer R. Fundamental properties of circadian rhythms. Chronobiology: Biological timekeeping, J C Dunlap, J J Loros, P J DeCoursey. Sinauer Associates, Sunderland, Mass. 2004; 67–105
  • Kaneko M, Cahill G M. Light‐dependent development of circadian gene expression in transgenic zebrafish. PLoS Biol. 2005; 3: 313–323
  • Kaneko M, Hernández‐Borsetti N, Cahill G M. Diversity of zebrafish peripheral oscillators revealed by luciferase reporting. Proc. Natl. Acad. Sci. USA 2006; 103: 14614–14619
  • Kazimi N, Cahill G M. Development of a circadian melatonin rhythm in embryonic zebrafish. Dev. Brain Res. 1999; 117: 47–52
  • Keny V, Vanlalnghaka C, Hakim S S, Barnabas R J, Joshi D S. Two oscillators might control the locomotor activity rhythm of the high‐altitude Himalayan strain of Drosophila helvetica. Chronobiol. Int. 2007; 24: 821–834
  • Lahiri K, Vallone D, Gondi S B, Santoriello C, Dickmeis T, Foulkes N S. Temperature regulates transcription in the zebrafish circadian clock. PLoS Biol. 2005; 3: e351
  • Lawrence C. The husbandry of zebrafish (Danio rerio): A review. Aquaculture 2007; 269: 1–20
  • Levy O, Dayan T, Kronfeld‐Schor N. The relationship between the golden spiny mouse circadian system and its diurnal activity: An experimental field enclosures and laboratory study. Chronobiol. Int. 2007; 24: 599–613
  • Liu Y, Merrow M, Loros J J, Dunlap J C. How temperature changes reset a circadian oscillator. Science 1998; 281: 825–829
  • López‐Olmeda J F, Madrid J A, Sánchez‐Vázquez F J. Light and temperature cycles as zeitgebers of zebrafish (Danio rerio) circadian activity rhythms. Chronobiol. Int. 2006; 23: 537–550
  • Martinez‐Chavez C C, Al‐Khamees S, Campos‐Mendoza A, Penman D J, Migaud H. Clock‐controlled endogenous melatonin rhythms in Nile tilapia (Oreochromis niloticus) and African catfish (Clarias gariepinus). Chronobiol. Int. 2008; 25: 31–49
  • Meseguer C, Ramos J, Bayarri M J, Oliveira C, Sánchez‐Vázquez F J. Light synchronization of the daily spawning rhythms of gilthead bream (Sparus aurata L) kept under different photoperiod and after shifting the LD cycle. Chronobiol. Int. 2008; 25: 666–679
  • Miyasako Y, Umezaki Y, Tomioka K. Separate sets of cerebral clock neurons are responsible for light and temperature entrainment of Drosophila circadian locomotor rhythms. J. Biol. Rhythms 2007; 22: 115–126
  • Pálková M, Sigmund L, Erkert H G. Effect of ambient temperature on the circadian rhythm in common marmosets. Callithrix J. jacchus (Primates) Chronobiol. Int. 1999; 16: 149–161
  • Payne A I, Temple S A. River and floodplain fisheries in the Ganges basin. ODA Fisheries Management Science Programme, LondonUnited Kingdom 1996; 141
  • Portaluppi F, Touitou Y, Smolensky M H. Ethical and methodological standards for laboratory and medical biological rhythm research. Chronobiol. Int. 2008; 25: 999–1016
  • Rajaratnam S, Redman J R. Entrainment of activity rhythms to temperature cycles in diurnal palm squirrels. Physiol. Behav. 1998; 63: 271–277
  • Reebs S G. Plasticity of diel and circadian activity rhythms in fishes. Rev. Fish Biol. Fish. 2002; 12: 349–371
  • Rensing L, Ruoff P. Temperature effect on entrainment, phase shifting, and amplitude of circadian clocks and its molecular bases. Chronobiol. Int. 2002; 19: 807–864
  • Reynolds W W, Casterlin M E, Matthey J K, Millington S T, Ostrowski A C. Diel patterns of preferred temperature and locomotor activity in the goldfish Carassius auratus. Comp. Biochem. Physiol. 1978; 59A: 225–227
  • Rossano C, Morgan E, Scapini F. Variation of the locomotor activity rhythms in three species of talitrid amphipods, Talitrus saltator, Orchestia montagui, and O. gammarellus, from various habitats. Chronobiol. Int. 2008; 25: 511–532
  • Ruby N F, Burns D E, Heller H C. Circadian rhythms in the suprachiasmatic nucleus are temperature‐compensated and phase‐shifted by heat pulses in vitro. J. Neurosci. 1999; 19: 8630–8636
  • Sánchez‐Vázquez F J, Madrid J A, Zamora S. Circadian rhythms of feeding activity in sea bass, Dicentrarchus labrax L.: Dual phasing capacity of diel demand‐feeding pattern. J. Biol. Rhythms 1995a; 10: 256–266
  • Sánchez‐Vázquez F J, Zamora S, Madrid J A. Light‐dark and food restriction cycles in sea bass: Effect of conflicting zeitgebers on demand‐feeding rhythms. Physiol. Behav. 1995b; 58: 705–714
  • Sánchez‐Vázquez F J, Madrid J A, Zamora S, Iigo M, Tabata M. Demand feeding and locomotor circadian rhythms in the goldfish, Carassius auratus: Dual and independent phasing. Physiol. Behav. 1996; 60: 665–674
  • Satralkar M K, Khare P V, Keny V L, Chhakchhuak V, Kasture M S, Shivagaje A J, Iyyer S B, Barnabas R J, Joshi D S. Effect of photophase and altitude on oviposition rhythm of the Himalayan strains of Drosophila ananassae. Chronobiol. Int. 2007; 24: 389–405
  • Sims D W, Wearmouth V J, Southall E J, Hill J M, Moore P, Rawlinson K, Hutchinson N, Budd G C, Righton D, Metcalfe J D, Nash J P, Morrit D. Hunt warm, rest cool: Bioenergetic strategy underlying diel vertical migration of a benthic chark. J. Anim. Ecol. 2006; 75: 176–190
  • Spence R, Gerlach G, Lawrence C, Smith C. The behaviour and ecology of the zebrafish. Danio rerio. Biol. Rev. 2008; 83: 13–34
  • Spieler R E, Noeske T A, Devlaming V L, Meier A H. Effects of thermocycles on body weight gain and gonadal growth in the goldfish Carassius auratus. Trans. Am. Fish. Soc. 1977; 106: 440–444
  • Vera L M, Madrid J A, Sánchez‐Vázquez F J. Locomotor, feeding and melatonin daily rhythms in sharpsnout seabream (Diplodus puntazzo). Physiol. Behav. 2006; 88: 167–172
  • Vera L M, De Oliveira C, López‐Olmeda J F, Ramos J, Mañanós E, Madrid J A, Sánchez‐Vázquez F J. Seasonal and daily plasma melatonin rhythms and reproduction in Senegal sole kept under natural photoperiod and natural or controlled water temperature. J. Pineal Res. 2007; 43: 50–55
  • Yoshii T, Fujii K, Tomioka K. Induction of Drosophila behavioral and molecular circadian rhythms by temperature steps in constant light. J. Biol. Rhythms 2007; 22: 103–114
  • Zachmann A, Knijff S CM, Bolliet V, Ali M A. Effects of temperature cycles and photoperiod on rhythmic melatonin secretion from the pineal organ of a teleost (Catostomus commersoni) in vitro. Neuroendocrinol. Lett. 1991; 13: 325–330

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.