Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 26, 2009 - Issue 3
233
Views
31
CrossRef citations to date
0
Altmetric
Original

Plasticity of Circadian Activity and Body Temperature Rhythms in Golden Spiny Mice

, &
Pages 430-446 | Received 06 Oct 2008, Accepted 29 Dec 2008, Published online: 07 Jul 2009

References

  • Blanchong J A, McElhinny T L, Mahoney M M, Smale L. Nocturnal and diurnal rhythms in the unstriped Nile rat. Arvicanthis niloticus.J. Biol. Rhythms 1999; 14: 364–377
  • Chaplin G. Geographic distribution of environmental factors influencing human skin coloration. Am. J. Phys. Anthropol. 2004; 125: 292–302
  • Cohen R, Kronfeld‐Schor N. Individual variability and photic entrainment of circadian rhythms in golden spiny mice. Physiol. Behav. 2006; 87: 563–574
  • Edgar D M, Martin C E, Dement W C. Activity feedback to the mammalian circadian pacemaker: Influence on observed measures of rhythm period length. J. Biol. Rhythms 1991; 6: 185–199
  • Ehrhardt N, Heldmaier G, Exner C. Adaptive mechanisms during food restriction in Acomys russatus: The use of torpor for desert survival. J. Comp. Physiol. B 2005; 175: 193–200
  • Elvert R, Kronfeld N, Dayan T, Haim A, Zisapel N, Heldmaier G. Telemetric field studies of body temperature and activity rhythms of Acomys russatus and A. cahirinus in the Judean Desert of Israel. Oecologia 1999; 119: 482–492
  • Friedman D, Haim A, Zisapel N. Temporal segregation in coexisting spiny mice (genus Acomys): Role of photoperiod and heterospecific odor. Physiol. Behav. 1997; 62: 407–411
  • Golombek D A, Ortega G, Cardinali D P. Wheel running raises body‐temperature and changes the daily cycle in golden‐hamsters. Physiol. Behav. 1993; 53: 1049–1054
  • Gutman R, Dayan T. Temporal partitioning between spiny mouse species: An experimental field study. Ecology 2005; 86: 164–173
  • Gutman R, Choshniak I, Kronfeld‐Schor N. Defending body mass during food restriction in Acomys russatus: Adesert rodent that does not store food. Am. J. Physiol. 2006; 290: R881–R891
  • Gutman R, Yosha D, Choshniak I, Kronfeld‐Schor N. Two strategies for coping with food shortage in desert golden spiny mice. Physiol.Behav. 2007; 90: 95–102
  • Hagenauer M H, Lee T M. Circadian organization of the diurnal Caviomorph rodent. OctodonDegus. Biol. Rhythm. Res. 2008; 39: 269–291
  • Haim A, Borut A. Size and activity of cold resistant population of the golden spiny mouse (Acomys russatus: Muridae). Mammalia 1975; 39: 605–611
  • Haim A, Borut A. Thermoregulation and nonshiveringthermogenesis as factors limiting distribution of golden spiny mouse (Acomys russatus). IMAJ 1976; 12: 896
  • Jablonski N G. The evolution of human skin and skin color. Annu. Rev.Anthropol. 2004; 33: 585–623
  • Kam M, Degen A A. Effect of dietary preformed water on energy and water budgets of two sympatric desert rodents, Acomys russatus and Acomys cahirinus. J. Zool. Lond 1993; 231: 51–59
  • Kas M J. Sleep and timekeepng in Octodon degus. Groningen University, The Netherlands 1999, Ph.D. thesis
  • Kas M J, Edgar D M. A nonphotic stimulus inverts the diurnal‐nocturnal phase preference in Octodon degus. J. Neurosci. 1999; 19: 328–333
  • Katona C, Smale L. Wheel‐running rhythms in Arvicanthis niloticus. Physiol. Behav. 1997; 61: 365–372
  • Keny V, Vanlalnghaka S S, Hakim R J, Barnabas R J, Joshi D S. Two oscillators might control the locomotor activity rhythm of the high‐altitude Himalayan strain of Drosophilia Helvetica. Chronobiol. Int. 2007; 24: 821–834
  • Kohler M, Wollnik F. Locking and unlocking of running wheel affects circadian period stability differently in three inbred strains of rats. J. Biol. Rhythms 1998; 13: 296–304
  • Koskela T K, Reiss G R, Brubaker R F, Ellefson R D. Is the high-concentration of ascorbic-acid in the eye an adaptation to intense solar irradiation?. Investigative Ophthalmology & Visual Science 1989; 30: 2265–2267
  • Kronfeld N, Dayan T. A new method of determining diets of rodents. J. Mammal. 1998; 79: 1198–1202
  • Kronfeld‐Schor N, Dayan T. Partitioning of time as an ecological resource. Annu. Rev. Ecol. Evol. Syst. 2003; 34: 153–181
  • Kronfeld‐Schor N, Dayan T. Activity patterns of rodents: The physiological ecology of biological rhythms. Biol. Rhythm. Res. 2008; 39: 193–211
  • Kronfeld N, Dayan T, Zisapel N, Haim A. Co‐existing populations of Acomyscahirinus and A. russatus: A preliminary report. Isr. J. Zool. 1994; 40: 177–183
  • Kronfeld‐Schor N, Haim A, Dayan T, Zisapel N, Klingenspor M, Heldmaier G. Seasonal thermogenic acclimation of diurnally and nocturnally active desert spiny mice. Physiol. Biochem. Zool. 2000; 73: 37–44
  • Kronfeld‐Schor N, Dayan T, Elvert R, Haim A, Zisapel N, Heldmaier G. On the use of the time axis for ecological separation: Diel rhythms as an evolutionary constraint. Am. Nat. 2001a; 158: 451–457
  • Kronfeld‐Schor N, Dayan T, Jones M E, Kremer I, Mandelik Y, Wollberg M, Yassur Y, Gaton D. Retinal structure and foraging microhabitat use of the golden spiny mouse. J. Mammal. 2001b; 82: 1016–1025
  • Kronfeld‐Schor N, Shargal E, Haim A, Dayan T, Zisapel N, Heldmaier G. Temporal partitioning among diurnally and nocturnally active desert spiny mice: Energy and water turnover costs. J. Therm. Biol. 2001c; 26: 139–142
  • Levy O, Dayan T, Kronfeld‐Schor N. The relationship between the golden spiny mouse circadian system and its diurnal activity: An experimental field enclosures and laboratory study. Chronobiol. Int. 2007; 24: 599–613
  • Mendelson H, Yom‐Tov Y. Fauna palaestina: Mammalia of Israel. Keterpress Enterprises, Jerusalem 1999; 439
  • Mrosovsky N. Further experiments on the relationship between the period of circadian rhythms and locomotor activity levels in hamsters. Physiol. Behav. 1999; 66: 797–801
  • Mrosovsky N. Beyond the suprachiasmatic nucleus. Chronobiol. Int. 2003; 20: 1–8
  • Mrosovsky N, Salmon P A, Vrang N. Revolutionary science: An improved running wheel for hamsters. Chronobiol. Int. 1998; 15: 147–158
  • Nixon J P, Smale L. Individual differences in wheel‐running rhythms are related to temporal and spatial patterns of activation of orexin A and B cells in a diurnal rodent (Arvicanthis niloticus). Neuroscience 2004; 127: 25–34
  • Ocampo‐Garces A, Hernandez F, Mena W, Palacios A G. Wheel‐running and rest activity pattern interaction in two octodontids (Octodon degus , Octodon bridgesi). Biol. Res. 2005; 38: 299–305
  • Oda G A, Bellusci S, Marques M D. Daily rhythms related to distinct social tasks inside aneusocial bee colony. Chronobiol. Int. 2007; 24: 845–858
  • Pati A K, Parganiha A, Kar A, Soni R, Roy S, Choudhary V. Alterations of the characteristics of the circadian rest‐activity rhythm of cancer in‐patients. Chronobiol. Int. 2007; 26: 1179–1197
  • Portaluppi F, Touitou Y, Smolensky M H. Ethical and methodological standards for laboratory and medical biological rhythm research. Chronobiol. Int. 2008; 25: 999–1016
  • Pratt B L, Goldman B D. Environmental influences upon circadian periodicity of Syrian hamsters. Physiol. Behav. 1986; 36: 91–95
  • Redlin U, Mrosovsky N. Nocturnal activity in a diurnal rodent (Arvicanthisniloticus): The importance of masking. J. Biol. Rhythms 2004; 19: 58–67
  • Refinetti R. Rhythms of body temperature and temperature selection are out of phase in a diurnal rodent. Octodon degus .Physiol. Behav. 1996; 60: 959–961
  • Refinetti R. The diversity of temporal niches in mammals. Biol. Rhythm Res. 2008; 39: 173–193
  • Roll U, Dayan T, Kronfeld‐Schor N. On the role of phylogeny in determining activity patterns of rodents. Evol. Ecol. 2006; 20: 479–490
  • Rossano C, Morgan E, Scapini F. Variation of the locomotor activity rhythms in three species of talitrid amphipods, Talitrus saltator, Orchestia montagui, and O. gammarellus, from various habitats. Chronobiol. Int. 2008; 25: 511–532
  • Rubal A, Choshniak I, Haim A. Daily rhythms of metabolic‐rate and body‐temperature of twomurids from extremely different habitats. Chronobiol. Int. 1992; 9: 341–349
  • Scott D M, Dunstone N. Environmental determinants of the composition of desert‐living rodent communities in the north‐eastBadia region of Jordan. J. Zool. Lond. 2000; 251: 481–494
  • Shargal E. Population biology and ecophysiology of coexisting Acomys cahirinus and Acomys russatus. Tel Aviv University Tel Aviv [in Hebrew]. 1997, MSc. thesis
  • Shkolnik A. Studies in the comparative biology of Israel's two species of spiny mice (genus Acomys). Hebrew University,Jerusalem [in Hebrew]. 1966, Ph.D. thesis
  • Shkolnik A. Diurnal activity in a small desert rodent. Int. J. Biometeorol. 1971; 15: 115–120
  • Shkolnik A, Borut A. Temperature and water relationsin two species of spiny mice (Acomys). J. Mammal. 1969; 50: 245–255
  • Weinert D, Sturm J, Waterhouse J. Different behavior of the circadian rhythms of activity and body temperature during resynchronization following an advance of the LD cycle. Biol. Rhythms Res. 2002; 33: 187–197
  • Weinert D, Weinady R, Gattermann R. Photic and non‐photic effects on the daily activity pattern of Mongolian gerbils. Physiol. Behav. 2007; 90: 325–333
  • Yamada N, Shimoda K, Ohi K, Takahashi K. Free‐access to a running wheel shortens the period of free‐running rhythm in blinded rats. Physiol. Behav. 1988; 42: 87–91

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.