Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 26, 2009 - Issue 3
513
Views
62
CrossRef citations to date
0
Altmetric
Original

Seasonal Variations in Clock‐Gene Expression in Atlantic Salmon (Salmo salar)

, &
Pages 379-395 | Received 17 Sep 2008, Accepted 12 Jan 2009, Published online: 07 Jul 2009

References

  • Allendorf F W, Thorgaard G H. Tetraploidy and the evolution of salmonid fishes. Evolutionary genetics of fishes, B J Turner. Plenum, New York 1984; 1–46
  • Aubin‐Horth N, Landry C R, Letcher B H, Hormann H A. Alternative life histories shape brain gene expression profiles in males of the same population. P. Roy. Soc. Lond. B. Bio. 2005; 272: 1655–1662
  • Bhattacharya S, Chattoraj A, Maitra S K. Melatonin in the regulation of annual testcular events in carp Catla catla: Evidence from studies on the effects of exogenous melatonin, continuous light, and continuous darkness. Chronobiol. Int. 2007; 24: 629–650
  • Bolliet V, Ali M A, Lapointe F‐J, Falcon J. Rhythmic melatonin secretion in different teleost species: An in vitro study. J. Comp. Physiol. B 1996; 165B: 677–683
  • Brandstatter R. Encoding time of day and time of year by the avian circadian system. J. Neuroendocrinol. 2003; 15: 398–404
  • Brierley I, Mazurais D, Drew J, Morgan P, Ross A, Anglade I, Randall C, Bromage N, Kah O, Williams L M. Melatonin receptor and PER1 gene expression in the teleost fish brain. Reproductive physiology of fish, B Norberg, O S Kjesbu, G L Taranger, E Andersson, S O Stefansson. John Grieg AS, BergenNorway 1999; 341
  • Bromage N, Porter M, Randall C. The environmental regulation of maturation in farmed finfish, with special reference to the role of photoperiod and melatonin. Aquaculture 2001; 197: 63–98
  • Cahill G M. Clock mechanisms in zebrafish. Cell Tissue Res. 2002; 309: 27–34
  • Carr A‐J F, Johnston J D, Semikhodskii A G, Nolan T, Cagampang F RA, Stirland J A, Loudon A SI. Photoperiod differentially regulates circadian oscillators in central and peripheral tissues of the Syrian hamster. Curr. Biol. 2003; 13: 1543–1548
  • Cermakian N, Whitmore D, Foulkes N S, Sassone‐Corsi P. Asynchronous oscillations of two zebrafish CLOCK partners reveal differential clock control and function. PNAS 2000; 97: 4339–4344
  • Chemineau P, Malpaux B, Brillard J P, Fostier A. Seasonality of reproduction and production in farm fishes, birds and mammals. Animal 2007; 1: 419–432
  • Daan S, Merrow M, Roenneberg T. External time‐internal time. J. Biol. Rhythm 2002; 17: 107–109
  • Dardente H, Cermakian N. Molecular circadian rhythms in central and peripheral clocks in mammals. Chronobiol. Int. 2007; 24: 195–213
  • Duffield G E. DNA microarray analyses of circadian timing: The genomic basis of biological time. J. Neuroendocrinol. 2003; 15: 991–1002
  • Dunlap J C. Molecular bases for circadian clocks. Cell 1999; 96: 271–290
  • Duston J, Bromage N. The entrainment and gating of the endogenous circannual rhythm of reproduction in the female rainbow trout (Salmo gairdneri). J. Comp. Physiol. A 1988; 164: 259–268
  • Duston J, Saunders R L. Effects of 6‐, 12‐, and 18‐month photoperiod cycles on smolting and sexual maturation in juvenile Atlantic salmon (Salmo salar). Can. J. Fish. Aquat. Sci. 1992; 49: 2273–2280
  • Eriksson L O, Lundqvist H. Circannual rhythms and photoperiod regulation of growth and smolting in Baltic salmon. Salmo salar L. Aquaculture 1982; 128: 113–121
  • Falcon J, Besseau L, Sauzet S, Boeuf G. Melatonin effects on the hypothalamo‐pituitary axis in fish. Trends Endocrinol. Metab. 2007; 18: 81–88
  • Felsenstein J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 1985; 39: 783–791
  • Foster R G. Photoentrainment of vertebrate circadian rhythms. Biological rhythms, V Kumar. Springer‐Verlag, New DelhiIndia 2002; 107–119
  • Foster R G, Kreitzman L. Rhythms of life: The biological clocks that control the daily lives of every living thing. Profile Books Ltd., London 2005; 288
  • Gern W A, Greenhouse S S, Nervina J M, Gasser P J. The rainbow trout pineal organ: An endocrine photometer. Rhythms in fishes, M Ali. Plenum Press, New York 1992; 199–219
  • Helfer G, Fidler A E, Vallone D, Foulkes N S, Brandstaetter R. Molecular analysis of clock gene expression in the avian brain. Chronobiol. Int. 2006; 23: 113–127
  • Holmqvist Bo I, Ostholm T, Ekstrom P. Retinohypothalamic projections and the suprachiasmatic nucleus in the teleost brain. Proceedings of a NATO Advanced Study Institute on rhythms in fishes: Rhythms in fishes, M A Ali. Plenum Press, New York 1992; 293–318
  • Iigo M, Abe T, Kambayashi S, Oikawa K, Masuda T, Mizusawa K, Kitamura S, Azuma T, Takagi Y, Aida K, Yanagisawa T. Lack of circadian regulation of in vitro melatonin release from the pineal organ of salmonid teleosts. Gen. Comp. Endocrinol. 2007; 154: 91–97
  • Johnston J D, Ebling F JP, Hazlerigg D G. Photoperiod regulates multiple gene expression in the suprachiasmatic nuclei and pars tuberalis of the Siberian hamster (Phodopus sungorus). Eur. J. Neurosci. 2005; 21: 2967–2974
  • Kobayashi Y, Ishikawa T, Hirayama J, Daiyasu H, Kanai S, Toh H, Fukuda I, Tsujimura T, Terada N, Kamei Y, Yuba S, Iwai S, Todo T. Molecular analysis of zebrafish photolyase/cryptochrome family: Two types of cryptochromes present in zebrafish. Genes Cells 2000; 5: 725–738
  • Larkin P, Baehr W, Semple‐Rowland S L. Circadian regulation of iodopsin and clock is altered in the retinal degeneration chicken retina. Mol. Brain Res. 1999; 70: 253–263
  • Leder E H, Danzmann R G, Ferguson M M. The candidate gene, clock, localizes to a strong spawning time quantitative trait locus region in rainbow trout. J. Hered. 2006; 97: 74–80
  • Lincoln G, Messager S, Andersson H, Hazlerigg D. Temporal expression of seven clock genes in the suprachiasmatic nucleus and the pars tuberalis of the sheep: Evidence for an internal coincidence timer. PNAS 2002; 99: 13890–13895
  • Lincoln G, Andersson H, Loudon A. Clock genes in calendar cells as the basis of annual timekeeping in mammals—a unifying hypothesis. J. Endocrinol. 2003; 179: 1–13
  • Mayer I, Bornestaf C, Borg B. Melatonin in non‐mammalian vertebrates: Physiological role in reproduction?. Comp. Biochem. Phys. A. 1997; 118A: 515–531
  • Mazurais D, Drean G L, Brierley I, Anglade I, Bromage N, Williams L M, Kah O. Expression of clock gene in the brain of rainbow trout: Comparison with the distribution of melatonin receptors. J. Comp. Neurol. 2000; 422: 612–620
  • Messager S, Hazlerigg D G, Mercer J G, Morgan P J. Photoperiod differentially regulates the expression of Per1 and ICER in the pars tuberalis and the suprachiasmatic nucleus of the Siberian hamster. Eur. J. Neurosci. 2000; 12: 2865–2870
  • Meseguer C, Ramos J, Bayarri M J, Oliveira C, Sánchez‐Válquez F J. Light synchronization of the daily spawning rhythms of gilthead sea bream (Sparus aurata L) kept under different photoperiod and after shifting the LD cycle. Chronobiol. Int. 2008; 25: 666–679
  • Migaud H, Davie A, Chavez C C, Al‐Khamees S. Evidence for differential photic regulation of pineal melatonin synthesis in teleosts. J. Pineal Res. 2007; 43: 327–335
  • O'Malley K G, Camara M D, Banks M A. Candidate loci reveal genetic differentiation between temporally divergent migratory runs in Chinook salmon (Oncorhynchus tshawytscha). Mol. Ecol. 2007; 16: 4930–4941
  • Pando M P, Sassone‐Corsi P. Unravelling the mechanisms of the vertebrate circadian clock: Zebrafish may light the way. Bioessays 2002; 24: 419–426
  • Pando M P, Pinchak A B, Cermakian N, Sassone‐Corsi P. A cell‐based system that recapitulates the dynamic light‐dependent regulation of the vertebrate clock. PNAS 2001; 98: 10178–10183
  • Park J G, Park Y J, Sugama N, Kim S J, Takemura A. Molecular cloning and daily variations of the Period gene in a reef fish. Siganus guttatus. J. Comp. Physiol. A 2007; 193: 403–411
  • Portaluppi F, Touitou Y, Smolensky M H. Ethical and methodological standards for laboratory and medical chronobiology research. Chronobiol. Int. 2008; 25: 999–1016
  • Porter M JR, Randall C F, Bromage N R. The effect of pineal removal on circulating melatonin levels in Atlantic salmon parr. J. Fish Biol. 1996; 48: 1011–1013
  • Porter M JR, Randall C F, Bromage N R, Thorpe J E. The role of melatonin and the pineal gland on development and smoltification of Atlantic salmon (Salmo salar) parr. Aquaculture 1998; 168: 139–155
  • Porter M JR, Duncan N, Stefansson S O, Bromage N. Temperature, light intensity and plasma melatonin levels in juvenile Atlantic salmon. J. Fish Biol. 2001; 58: 431–438
  • Randall C F, Bromage N R, Thorpe J E, Miles M S, Muir J S. Melatonin rhythms in Atlantic salmon, Salmo salar, maintained under natural and out‐of‐phase photoperiods. Gen. Comp. Endocrinol. 1995; 98: 73–86
  • Randall C F, Bromage N R, Duston J, Symes J. Photoperiod induced phase‐shifts of the endogenous clock controlling reproduction in rainbow trout: A circannual phase‐response curve. J. Reprod. Fertil. 1998; 112: 399–405
  • Saitou N, Neil M. The neighbour‐joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987; 4: 406–425
  • Sanchez‐Vazquez F J, Tabata M. Circadian rhythms in demand feeding and locomotor activity in rainbow trout. J. Fish Biol. 1998; 52: 255–267
  • Steinlechner S, Jacobmeier B, Scherbarth F, Dernbach H, Kruse F, Albrecht U. Robust circadian rhythmicity of Per1 and Per2 mutant mice in constant light, and dynamics of Per1 and Per2 gene expression under long and short photoperiods. J. Biol. Rhythms 2002; 17: 202–209
  • Stewart D C, Smith G W, Youngson A F. Tributary‐specific variation in timing of return of adult Atlantic salmon (Salmo salar) to fresh water has a genetic component. Can. J. Fish. Aquat. Sci. 2002; 59: 276–281
  • Stewart D C, Middlemas S J, Youngson A F. Population structuring in Atlantic salmon (Salmo salar): Evidence of genetic influence on the timing of smolt migration in sub‐catchment stocks. Ecol. Freshw. Fish 2006; 15: 552–558
  • Sugama N, Park J G, Park Y J, Takeuchi Y, Kim S J, Takemura A. Moonlight affects nocturnal Period2 transcript levels in the pineal gland of the reef fish Siganus guttatus. J. Pineal Res. 2008; 45: 133–141
  • Sumova A, Jac M, Sladek M, Sauman I, Illnerova H. Clock gene daily profiles and their phase relationship in the Rat suprachiasmatic nucleus are affected by photoperiod. J. Biol. Rhythms 2003; 18: 134–144
  • Sumova A, Bendova Z, Sladek M, Kovacikova Z, Illnerova H. Seasonal molecular timekeeping within the rat circadian clock. Physiol. Res. 2004; 53: S167–S176
  • Tamai T K, Carr A J, Whitmore D. Zebrafish circadian clocks: Cells that see light. Biochem. Soc. T. 2005; 33: 962–966
  • Tamura K, Nei M, Kumar S. Prospects for inferring very large phylogenies by using the neighbor‐joining method. PNAS 2004; 101: 11030–11035
  • Tamura K, Dudley J, Nei M, Kumar S. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0. Mol. Biol. Evol. 2007; 24: 1596–1599
  • Thompson J D, Plewniak F, Thierry J C, Poch O. DbClustal: Rapid and reliable global multiple alignments of protein sequences detected by database searches. Nucleic Acids Res. 2000; 28: 2919–2926
  • Tournier B B, Menet J S, Dardente H, Poirel V J, Malan A, Masson‐Pevet M, Pevet P, Vuillez P. Photoperiod differentially regulates clock genes’ expression in the suprachiasmatic nucleus of Syrian hamster. Neuroscience 2003; 118: 317–322
  • Tournier B B, Dardente H, Simonneaux V, Vivien‐Roels B, Pevet P, Masson‐Pevet M, Vuillez P. Seasonal variations of clock gene expression in the suprachiasmatic nuclei and pars tuberalis of the European hamster (Cricetus cricetus). Eur. J. Neurosci. 2007; 25: 1529–1536
  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F. Accurate normalization of real‐time quantitative RT‐PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002; 3(7), research0034.1‐0034.11
  • Wagner G C, Johnston J D, Clarke I J, Lincoln G A, Hazlerigg D G. Redefining the limits of day length responsiveness in a seasonal mammal. Endocrinology 2008; 149: 32–39
  • Wang H. Comparative analysis of Period genes in the teleost fish genomes. J. Mol. Evol. 2008; 67: 29–40
  • Whitmore D, Foulkes N S, Strahle U, Sassone‐Corse P. Zebrafish Clock rhythmic expression reveals independent peripheral circadian oscillators. Nat. Neurosci. 1998; 1: 701–707
  • Whitmore D, Foulkes N S, Sassone‐Corse P. Light acts directly on organs and cells in culture to set the vertebrate circadian clock. Nature 2000; 404: 87–90
  • Yasuo S, Watanabe M, Okabayashi N, Ebihara S, Yoshimura T. Circadian clock genes and photoperiodism: Comprehensive analysis of clock gene expression in the mediobasal hypothalamus, the suprachiasmatic nucleus, and the pineal gland of Japanese quail under various light schedules. Endocrinology 2003; 144: 3742–3748
  • Yoshimura T, Suzuki Y, Makino E, Suzuki T, Kuroiwa A, Matsuda Y, Namikawa T, Ebihara S. Molecular analysis of avian circadian clock genes. Mol. Brain Res. 2000; 78: 207–215
  • Zaunreiter M, Brandstatter R, Goldschmid A. Evidence for an endogenous clock in the retina or rainbow trout, I: Retinomotor movements, dopamine and melatonin. Neuroreport 1998a; 9: 1205–1209
  • Zaunreiter M, Brandstatter R, Goldschmid A. Evidence for an endogenous clock in the retina of rainbow trout, II: Circadian rhythmicity or serotonin metabolism. Neuroreport 1998b; 9: 1475–1479
  • Ziv L, Gothilf Y. Period 2 expression pattern and its role in the development of the pineal circadian clock in zebrafish. Chronobiol. Int. 2006; 23: 101–112

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.