Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 36, 2019 - Issue 4
416
Views
20
CrossRef citations to date
0
Altmetric
Original Articles

Progressive retinal ganglion cell loss in primary open-angle glaucoma is associated with temperature circadian rhythm phase delay and compromised sleep

ORCID Icon, , , , , & show all
Pages 564-577 | Received 09 Nov 2018, Accepted 05 Jan 2019, Published online: 21 Jan 2019

References

  • Agorastos A, Huber CG. 2011. The role of melatonin in glaucoma: implications concerning pathophysiological relevance and therapeutic potential. J Pineal Res. 50(1):1–7.
  • Alkozi H, Sanchez-Naves J, de Lara MJ, Carracedo G, Fonseca B, Martinez-Aguila A, Pintor J. 2017a. Elevated intraocular pressure increases melatonin levels in the aqueous humour. Acta Ophthalmol. 95(3):e185–e189.
  • Alkozi HA, Mj PDL, Sánchez-Naves J, Pintor J. 2017b. TRPV4 stimulation induced melatonin secretion by increasing Arylalkymine N-acetyltransferase (AANAT) protein level. Reiter RJ, ed. Int J Mol Sci. 18(4):746.
  • Aptel F, Aryal-Charles N, Giraud JM, El Chehab H, Delbarre M, Chiquet C, Romanet J-P, Renard J-P. 2015. Progression of visual field in patients with primary open-angle glaucoma - ProgF study 1. Acta Ophthalmol. 93(8):e615–20.
  • Aranda ML, Fleitas MFG, Dieguez H, Iaquinandi A, Sande PH, Dorfman D, Rosenstein RE. 2017. Rosenstein R.E. Melatonin as a therapeutic resource for inflammatory visual diseases. Curr Neuropharmacol. 15(7):951–62.
  • Arintawati P, Sone T, Akita T, Tanaka J, Kiuchi Y. 2013. The applicability of ganglion cell complex parameters determined from SD-OCT images to detect glaucomatous eyes. J Glaucoma. 22(9):713–18.
  • Bedrosian TA, Nelson RJ. 2012. Pro: Alzheimer’s disease and circadian dysfunction: chicken or egg? Alzheimers Res Ther. 13; 4(4):25. doi:10.1186/alzrt128. eCollection 2012.
  • Berson DM, Dunn FA, Takao M. 2003. Phototransduction by retinal ganglion cells that set the circadian clock. Science. 295(5557):1070–73.
  • Bingham C, Arbogast B, Cornelissen-Guillaume GC, Lee JK, Halberg F. 1982. Inferential statistical methods for estimating and comparing cosinor parameters. Chronobiologia. 9(4):397–439.
  • Bussel II, Wollstein G, Schuman JS. 2014. OCT for glaucoma diagnosis, screening and detection of glaucoma progression. Br J Ophthalmol. 98(Suppl2):ii15–ii19.
  • Carrier J, Paquet J, Morettini J, Touchette E. 2002. Phase advance of sleep and temperature circadian rhythms in the middle years of life in humans. Neurosci Lett. 320(1–2):1–4.
  • Chiquet C, Claustrat B, Thuret G, Brun J, Cooper HM, Denis P. 2006. Melatonin concentrations in aqueous humor of glaucoma patients. Am J Ophthalmol. 142:325–27.
  • Cornelissen G. 2014. Cosinor-based rhythmometry. Theor Biol Med Model. 11:16.
  • Cui Q, Ren C, Sollars PJ, Pickard GE, So K-F. 2015. The injury resistant ability of melanopsin-expressing intrinsically photosensitive retinal ganglion cells. Neurosci. 284:845–53.
  • Doustar J, Torbati T, Black KL, Koronyo Y, Koronyo-Hamaoui M. 2017. Optical coherence tomography in Alzheimer’s disease and other neurodegenerative diseases. Front Neurol. 8:701.
  • Drouyer E, Dkhissi-Benyahya O, Chiquet C, WoldeMussie E, Ruiz G, Wheeler LA, Denis P, Cooper HM, Chédotal A. 2008. Glaucoma alters the circadian timing system. Chédotal A, ed. PLoS One. 3(12):e3931.
  • Duffy JF, Zitting K-M, Chinoy ED. 2015. Aging and circadian rhythms. Sleep Med Clin. 10(4):423–34. doi:10.1016/j.jsmc.2015.08.002.
  • Edwards B, Waterhouse J, Reilly T, Atkinson G. 2002. A comparison of the suitabilities of rectal, gut, and insulated axilla temperatures for measurement of the circadian rhythm of core temperature in field studies. Chronobiol Int. 19:579–97.
  • Escobar C, Salgado-Delgado R, Gonzalez-Guerra E, Tapia Osorio A, Angeles-Castellanos M, Buijs RM. 2011. Circadian disruption leads to loss of homeostasis and disease. Sleep Disord. 964510. doi:10.1155/2011/964510
  • Esquiva G, Lax P, Pérez-Santonja J.J, García-Fernández JM, Cuenca N. 2017. Loss of melanopsin-expressing ganglion cell subtypes and dendritic degeneration in the aging human retina. Front Aging Neurosci. 9:79.
  • Feigl B, Mattes D, Thomas R, Zele AJ. 2011. Intrinsically photosensitive (melanopsin) retinal ganglion cell function in glaucoma. Invest Ophthalmol Vis Sci. 21;52(7):4362–67.
  • Flammer J, Mozaffarieh M. 2007. What is the present pathogenetic concept of glaucomatous optic neuropathy? Surv Ophthalmol. 52(Suppl 2):S162–73.
  • Freedman MS, Lucas RJ, Soni B, von Schantz M, Muñoz M, David-Gray Z, Foster R. 1999. Regulation of mammalian circadian behavior by non-rod, non-cone, ocular photoreceptors. Science. 284(5413):502–04.
  • Girardin J-L, Zizi F, Lazzaro DR, Wolintz AH. 2008. Circadian rhythm dysfunction in glaucoma: a hypothesis. J Circadian Rhythms. 6:1.
  • Golombek DA, Rosenstein RE. 2010. Physiology of circadian entrainment. Physiol Rev. 90(3):1063–102.
  • González Fleitas MF, Bordone M, Rosenstein RE, Dorfman D. 2015. Effect of retinal ischemia on the non-image forming visual system. Chronobiol Int. 32(2):152–63.
  • Göz D, Studholme K, Lappi DA, Rollag MD, Provencio I, Morin LP, Greene E. 2008. Targeted destruction of photosensitive retinal ganglion cells with a saporin conjugate alters the effects of light on mouse circadian rhythms. PLoS One. 3(9):e3153.
  • Gracitelli CP, Duque-Chica GL, Roizenblatt M, et al. 2015. Intrinsically photosensitive retinal ganglion cell activity is associated with decreased sleep quality in patients with glaucoma. Ophthalmol 122(6):1139–48. doi:10.1016/j.ophtha.2015.02.030. Epub 2015 Apr 7.
  • Gracitelli CP, Duque-Chica GL, Moura AL, Roizenblatt M, Nagy BV, de Melo GR, Borba PD, Teixeira SH, Tufik S, Ventura DF, Paranhos A. 2016. Relationship between daytime sleepiness and intrinsically photosensitive retinal ganglion cells in glaucomatous disease. J Ophthalmol. 5317371. doi:10.1155/2016/5317371
  • Gubin D, Nelaeva A, Uzhakova A, Hasanova YV, Cornelissen G, Weinert D. 2017b. Disrupted circadian rhythms of body temperature, heart rate and fasting blood glucose in prediabetes and type 2 diabetes mellitus. Chronobiology Int. 34(8):1136–48.
  • Gubin D, Weinert D. 2015. Temporal order deterioration and circadian disruption with age 1. Central and peripheral mechanisms. Adv Gerontol. 5:209–18.
  • Gubin D, Weinert D. 2016. Deterioration of temporal order and circadian disruption with age 2: systemic mechanisms of aging-related circadian disruption and approaches to its correction. Adv Gerontol. 6:10–20.
  • Gubin DG, Gubin GD, Gapon LI, Weinert D. 2016a. Daily melatonin administration attenuates age-dependent disturbances of cardiovascular rhythms. Curr Aging Sci. 9(1):5–13.
  • Gubin DG, Gubin GD, Waterhouse J, Weinert D. 2006. The circadian body temperature rhythm in the elderly: effect of single daily melatonin dosing. Chronobiol Int. 23:639–58.
  • Gubin DG, Weinert D, Bolotnova TV. 2016b. Age-dependent changes of the temporal order–causes and treatment. Curr Aging Sci. 9:14–25.
  • Gubin DG, Weinert D, Rybina SV, Danilova LA, Solovieva SV, Durov AM, Prokopiev NY, Ushakov PA. 2017a. Activity, sleep and ambient light have a different impact on circadian blood pressure, heart rate and body temperature rhythms. Chronobiology Int. 34(5):632–49.
  • Guo -Z-Z, Jiang S-M, Zeng L-P, Fang C-L, Mi S-Y, Gao X-C, Han Q. 2017. ipRGCs: possible causation accounts for the higher prevalence of sleep disorders in glaucoma patients. Int J Ophthalmol. 10(7):1163–67.
  • Harper DG, Volicer L, Stopa EG, McKee AC, Nitta M, Satlin A. 2005. Disturbance of endogenous circadian rhythm in aging and Alzheimer disease. Am J Geriatr Psychiatry. 13(5):359–68.
  • Hood S, Amir S. 2017. Neurodegeneration and the circadian clock. Front Aging Neurosci. 9:170.
  • Horne JA, Ostberg O. 1976. A self-assessment questionnaire to determine morningness-eveningness in human circadian rhythms. Int J Chronobiol. 4(2):97–110.
  • Knight EM, Brown TM, Gümüsgöz S, Smith JCM, Waters EJ, Allan SM, Lawrence CB. 2013. Age-related changes in core body temperature and activity in triple-transgenic Alzheimer’s disease (3xTgAD) mice. Dis Model Mech. 6(1):160–70.
  • Kress GJ, Liao F, Dimitry J, Cedeno MR, FitzGerald GA, Holtzman DM, Musiek ES. 2018. Regulation of amyloid-β dynamics and pathology by the circadian clock. J Exp Med 215(4):1059–68. doi:10.1084/jem.20172347. Epub 2018 Jan 30.
  • La Morgia C, Di Vito L, Carelli V, Carbonelli M. 2017b. Patterns of retinal ganglion cell damage in neurodegenerative disorders: parvocellular vs magnocellular degeneration in optical coherence tomography studies. Front Neurol. 8:710.
  • La Morgia C, Gallassi R, Sambati L, et al. 2013. Melanopsin retinal ganglion cells and circadian dysfunction in Alzheimer’s disease. Acta Ophthalmol (Copenh). 91 (Suppl. s252). doi:10.1111/j.1755-3768.2013.3776.x
  • La Morgia C, Ross-Cisneros FN, Koronyo Y, et al. 2016. Melanopsin retinal ganglion cell loss in Alzheimer disease. Ann Neurol. 79(1):90–109.
  • La Morgia C, Ross-Cisneros FN, Sadun AA, Carelli V. 2017a. Retinal ganglion cells and circadian rhythms in Alzheimer’s disease, Parkinson’s disease, and beyond. Front Neurol. 8:162.
  • Lanzani MF, de Zavalía N, Fontana H, Sarmiento MIK, Golombek D, Rosenstein RE. 2012. Alterations of locomotor activity rhythm and sleep parameters in patients with advanced glaucoma. Chronobiol Int. 29(7):911–19.
  • Lax P, Esquiva G, Fuentes-Broto L, Segura F, Sánchez-Cano A, Cuenca N, Pinilla I. 2016. Age-related changes in photosensitive melanopsin-expressing retinal ganglion cells correlate with circadian rhythm impairments in sighted and blind rats. Chronobiol Int 33(4):374–91. doi:10.3109/07420528.2016.1151025. Epub 2016 Mar 22.
  • Lee J-A, Han K, Min JA, Choi JA. 2016. Epidemiologic survey committee of the korean ophthalmological society. Associations of sleep duration with open angle glaucoma in the korea national health and nutrition examination survey. pang. I-H, ed. Medicine. 95(52):e5704.
  • Li RS, Chen BY, Tay DK, Chan HHL, Pu M-L, So K-F. 2006. Melanopsin-expressing retinal ganglion cells are more injury-resistant in a chronic ocular hypertension model. Invest Ophthalmol Vis Sci. 47(7):2951–58.
  • Lundmark PO, Pandi-Perumal SR, Srinivasan V, Cardinali DP, Rosenstein RE. 2007. Melatonin in the eye: implications for glaucoma. Exp Eye Res. 84(6):1021–30. doi:10.1016/j.exer.2006.10.018. Epub 2006 Dec 14.
  • Ma X-P, Shen M-Y, Shen G-L, Qi Q-R, Sun X-H. 2018. Melatonin concentrations in serum of primary glaucoma patients. Int J Ophthalmol. 11(8):1337–41.
  • Markwell EL, Feigl B, Zele AJ. 2010. Intrinsically photosensitive melanopsin retinal ganglion cell contributions to the pupillary light reflex and circadian rhythm. Clin Exp Optom. 137–49. doi:10.1111/j.1444-0938.2010.00479.x
  • Marmor MF, Zrenner E. 1999. Standard for clinical electroretinography. Doc Ophthalmol. 97:143–56.
  • Musiek ES. 2015. Circadian clock disruption in neurodegenerative diseases: cause and effect? Front Pharmacol. 6:29.
  • Musiek ES. 2017. Circadian Rhythms in AD pathogenesis: a critical appraisal. Curr Sleep Med Rep 3(2):85–92. doi:10.1007/s40675-017-0072-5. Epub 2017 Apr 22.
  • Musiek ES, Bhimasani M, Zangrilli MA, Morris JC, Holtzman DM, Ju Y-ES. 2018. Circadian rest-activity pattern changes in aging and preclinical Alzheimer disease. JAMA Neurol. 75(5):582–90.
  • Naghizadeh F, Garas A, Vargha P, Holló G. 2014. Detection of early glaucomatous progression with different parameters of the RTVue optical coherence tomograph. J Glaucoma. 23(4):195–98.
  • Obara EA, Hannibal J, Heegaard S, Fahrenkrug J. 2016. Loss of melanopsin-expressing retinal ganglion cells in severely staged glaucoma patients. Invest Ophthalmol Vis Sci. 57(11):4661–67.
  • Panda S, Provencio I, Tu DC, Pires SS, Rollag MD, Castrucci AM, Pletcher MT, Sato TK, Wiltshire T, Andahazy M. 2003. Melanopsin is required for non-image-forming photic responses in blind mice. Science. 301:525–27.
  • Panda S, Sato TK, Castrucci AM, Rollag MD, DeGrip WJ, Hogenesch JB, Provencio I, Kay SA. 2002. Melanopsin (Opn4) requirement for normal light-induced circadian phase shifting. Science. 298:2213–16.
  • Paul KN, Saafir TB, Tosini G. 2009. The role of retinal photoreceptors in the regulation of circadian rhythms. Rev Endocr Metab Disord. 10(4):271–78.
  • Perez-Rico C, de la Villa P, Arribas-Gomez I, Blanco R. 2010. Evaluation of functional integrity of the retinohypothalamic tract in advanced glaucoma using multifocal electroretinography and light-induced melatonin suppression. Exp Eye Res. 91:578–83.
  • Ramirez AI, de Hoz R, Salobrar-Garcia E, Kamal MA. 2017. The role of microglia in retinal neurodegeneration: Alzheimer’s disease, Parkinson, and glaucoma. Front Aging Neurosci. 9:214.
  • Robson AG, Nilsson J, Li S, Jalali S, Fulton, AB, Tormene, AP, Holder GE, Brodie SE. 2018. ISCEV guide to visual electrodiagnostic procedures. Documenta ophthalmologica. Adv Ophthalmol. 136(1):1–26. doi:10.1007/s10633-017-9621-y
  • Saccà SC, Izzotti A. 2008. Oxidative stress and glaucoma: injury in the anterior segment of the eye. Prog Brain Res. 173:385–407.
  • Sánchez-Migallón MC, Valiente-Soriano FJ, Nadal-Nicolás FM, Di Pierdomenico J, Vidal-Sanz M, Agudo-Barriuso M. 2018. Survival of melanopsin expressing retinal ganglion cells long term after optic nerve trauma in mice. Exp Eye Res. 174:93–97.
  • Satlin A, Volicer L, Stopa EG, Harper D. 1995. Circadian locomotor activity and core-body temperature rhythms in Alzheimer’s disease. Neurobiol Aging. 16(5):765–71.
  • Schmidt TM, Do MTH, Dacey D, Lucas R, Hattar S, Matynia A. 2011. Melanopsin-positive intrinsically photosensitive retinal ganglion cells: from form to function. J Neurosci. 31(45):16094–101.
  • Stranahan AM. 2012. Chronobiological approaches to Alzheimer’s disease. Curr Alzheimer Res. 9(1):93–98.
  • Tan O, Chopra V, Lu AT-H, Schuman JS, Ishikawa H, Wollstein G, Varma R, Huang D. 2009. Detection of macular ganglion cell loss in glaucoma by fourier-domain optical coherence tomography. Ophthalmol. 116(12):2305–2314.e2.
  • Tham YC, Li X, Wong TY, Quigley HA, Aung T, Cheng C-Y. 2014. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmol. 121(11):2081–90.
  • Tosini G, Baba K, Hwang CK, Iuvone PM. 2012. Melatonin: an underappreciated player in retinal physiology and pathophysiology. Exp Eye Res. 103:82–89.
  • Tosini G, Boatright JH. 2013. Is the melatonin receptor type 1 involved in the pathogenesis of glaucoma? J Glaucoma. 22(5):S49–S50.
  • Touitou Y, Reinberg A, Touitou D. 2017. Association between light at night, melatonin secretion, sleep deprivation, and the internal clock: health impacts and mechanisms of circadian disruption. Life Sci. 173:94–106.
  • Touitou Y, Touitou D, Reinberg A. 2016. Disruption of adolescents’ circadian clock: the vicious circle of media use, exposure to light at night, sleep loss and risk behaviors. J Physiol Paris. 110:467–79.
  • Tsolaki F, Gogaki E, Tiganita, S, Skatharoudi C, Lopatatzidi C, Topouzis F, Tsolaki M. 2011. Alzheimer’s disease and primary open-angle glaucoma: is there a connection?. Clin Ophthalmol. 5:887–90.
  • Vaze KM, Sharma VK. 2013. On the adaptive significance of circadian clocks for their owners. Chronobiol Int. 30(4):413–33.
  • Ventura LM, Porciatti V, Ishida K, Feuer WJ, Parrish RK. 2005. Pattern electroretinogram abnormality and glaucoma. Ophthalmol. 112(1):10–19.
  • Vidal-Sanz M, Galindo-Romero C, Valiente-Soriano FJ, et al. 2017. Shared and differential retinal responses against optic nerve injury and ocular hypertension. Front Neurosci. 11:235.
  • Videnovic A, Zee PC. 2015. Consequences of circadian disruption on neurologic health. Sleep Med Clin. 10(4):469–80.
  • Volicer L, Dg H, Bc M, Goldstein R, Satlin A. 2001. Sundowning and circadian rhythms in Alzheimer’s disease. Am J Psychiatry. 158(5):704–11.
  • Wang H, Zhang Y, Ding J, Wang N, Peddada SD. 2013. Changes in the circadian rhythm in patients with primary glaucoma. Peddada SD, ed. PLoS One. 8(4):e62841.
  • Wang S, Gu D, Zhang P, Chen J, Li Y, Xiao H, Zhou G. 2018. Melanopsin-expressing retinal ganglion cells are relatively resistant to excitotoxicity induced by N-methyl-d-aspartate. Neurosci Lett. 662:368–73.
  • Waterhouse JM, DeCoursey PJ. 2004. Human circadian organization. In: Dunlap JC, Loros JJ, DeCoursey PJ, editors. Chronobiology: biological timekeeping. Sunderland, MA, USA: Sinauer Associates Inc.; p. 291–324.
  • Weaver DR. 1998. The suprachiasmatic nucleus: a 25-year retrospective. J Biol Rhythm. 13(2):100–12.
  • Weinert D. 2010. Circadian temperature variation and ageing. Ageing Res Rev. 9(1):51–60.
  • Weinreb RN, Aung T, Medeiros FA. 2014. The pathophysiology and treatment of glaucoma: a review. Jama. 311(18):1901–11.
  • Wilsey LJ, Fortune B. 2016. Electroretinography in glaucoma diagnosis. Curr Opin Ophthalmol. 27(2):118–24.
  • Zhang J, Wang H, Wu S, Liu Q, Wang N. 2017. Regulation of reentrainment function is dependent on a certain minimal number of intact functional ipRGCs in rd mice. J Ophthalmol. 6804853. doi:10.1155/2017/6804853

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.