Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 36, 2019 - Issue 11
318
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Functional and anatomical variations in retinorecipient brain areas in Arvicanthis niloticus and Rattus norvegicus: implications for the circadian and masking systems

, , , & ORCID Icon
Pages 1464-1481 | Received 29 Mar 2019, Accepted 30 Jul 2019, Published online: 23 Aug 2019

References

  • Ahnelt PK, Kolb H. 2000. The mammalian photoreceptor mosaic-adaptive design. Prog Retin Eye Res. 19(6):711–777.
  • Ankel-Simons F, Rasmussen DT. 2008. Diurnality, nocturnality, and the evolution of primate visual systems. Am J Phys Anthropol. Suppl. 47:100–117.
  • Aschoff J. 1999. Masking and parametric effects of high-frequency light-dark cycles. Jpn J Physiol. 49(1):11–18.
  • Blanchong JA, McElhinny TL, Mahoney MM, Smale L. 1999. Nocturnal and diurnal rhythms in the unstriped Nile rat, Arvicanthis niloticus. J Biol Rhythms. 14(5):364.
  • Blanchong JA, Smale L. 2000. Temporal patterns of activity of the unstriped Nile rat, Arvicanthis niloticus. J Mammal. 81(2):595–599.
  • Caldelas I, Salazar-Juarez A, Granados-Fuentes D, Escobar C, Aguilar-Roblero R. 1998. Circadian modulation of c-Fos expression occurs only in the SCN and not in other visual projection areas in the rat. Biol Rhythm Res. 29(5):494–500.
  • Campi KL, Collins CE, Todd WD, Kaas J, Krubitzer L. 2011. Comparison of area 17 cellular composition in laboratory and wild-caught rats including diurnal and nocturnal species. Brain Behav Evol. 77:116–130.
  • Campi KL, Krubitzer L. 2010. Comparative studies of diurnal and nocturnal rodents: differences in lifestyle result in alterations in cortical field size and number. J Comp Neurol. 518(22):4491–4512.
  • Castillo-Ruiz A, Nixon JP, Smale L, Nunez AA. 2010. Neural activation in arousal and reward areas of the brain in day-active and night-active grass rats. Neuroscience. 165(2):337–349.
  • Cornelissen G. 2014. Cosinor-based rhythmometry. Theor Biol Med Model. 11:16.
  • Craner SL, Hoffman GE, Lund JS, Humphrey AL, Lund RD. 1992. cFos labeling in rat superior colliculus: activation by normal retinal pathways and pathways from intracranial retinal transplants. Exp Neurol. 117(3):219–229.
  • Delany MJ, Monro RH. 1986. Population dynamics of Arvicanthis niloticus (Rodentia: muridae) in Kenya. J Zool Lond (A). 209:85–103.
  • Edelstein K, Amir S. 1999. The role of the intergeniculate leaflet in entrainment of circadian rhythms to a skeleton photoperiod. J Neurosci. 19:372–380.
  • Edelstein K, Beaule C, D’Abramo R, Amir S. 2000. Expression profiles of JunB and c-Fos proteins in the rat circadian system. Brain Res. 870:54–65.
  • Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin JC, Pujol S, Bauer C, Jennings D, Fennessy F, Sonka M, et al. 2012. 3D slicer as an image computing platform for the quantitative imaging network. Magnetic Resonance Imaging. 30(9):1323–1341.
  • Fogo GM, Goodwin AM, Khacherian OS, Ledbetter BJ, Gall AJ. 2018. The effects of ambient temperature and lighting intensity on wheel-running behavior in a diurnal rodent, the Nile grass rat (Arvicanthis niloticus). J Comp Psychol. 133(2):215–222.
  • Gaillard F, Bonfield S, Gilmour GS, Kuny S, Mema SC, Martin BT, Smale L, Crowder N, Stell WK, Sauvé Y. 2008. Retinal anatomy and visual performance in a diurnal cone-rich laboratory rodent, the Nile grass rat (Arvicanthis niloticus). J Comp Neurol. 510(5):525–538.
  • Gaillard F, Karten HJ, Sauve Y. 2013. Retinorecipient areas in the diurnal murine rodent Arvicanthis niloticus: a disproportionally large superior colliculus. J Comp Neurol. 521(8):1699–1726.
  • Gall AJ, Khacherian OS, Ledbetter B, Deats SP, Luck M, Smale L, Yan L, Nunez AA. 2017. Normal behavioral responses to light and darkness and the pupillary light reflex are dependent upon the olivary pretectal nucleus in the diurnal nile grass rat. Neuroscience. 355:237–255.
  • Gall AJ, Smale L, Yan L, Nunez AA. 2013. Lesions of the intergeniculate leaflet lead to a reorganization in circadian regulation and a reversal in masking responses to photic stimuli in the nile grass rat. PLoS ONE. 8(6):e67387.
  • Gall AJ, Yan L, Smale L, Nunez AA. 2014. Intergeniculate leaflet lesions result in differential activation of brain regions following the presentation of photic stimuli in Nile grass rats. Neurosci Lett. 579:101–105.
  • Garamszegi LZ, Moller AP, Erritzoe J. 2001. Coevolving avian eye size and brain size in relation to prey capture and nocturnality. Proc R Soc Lond B. 269:961–967.
  • Gilmour GS, Gaillard F, Watson J, Kuny S, Mema SC, Bonfield S, Stell WK, Sauvé Y. 2008. The electroretinogram (ERG) of a diurnal cone-rich laboratory rodent, the Nile grass rat (Arvicanthis niloticus). Vision Res. 48(27):2723–2731.
  • Heesy CP, Kamilar JM, Willms J. 2011. Retinogeniculate pathway components scale with orbit convergence only in primates and not other mammals. Brain Behav Evol. 77:105–115.
  • Heimel JA, Van Hooser SD, Nelson SB. 2005. Laminar organization of response properties in primary visual cortex of the gray squirrel (sciurus carolinensis). J Neurophysiol. 94:3538–3554.
  • Ibuka N, Inouye ST, Kawamura H. 1977. Analysis of sleep-wakefulness rhythms in male rats after suprachiasmatic nucleus lesions and ocular enucleation. Brain Res. 122(1):33–47.
  • Johnson RF, Moore RY, Morin LP. 1989. Lateral geniculate lesions alter circadian activity rhythms in the hamster. Brain Res Bull. 22:411–422.
  • Katona C, Smale L. 1997. Wheel-running rhythms in Arvicanthis niloticus. Physiol Behav. 61(3):365–372.
  • Kirk CE. 2006. Effects of activity pattern on eye size and orbital aperture size in primates. J Hum Evol. 51(2):159–170.
  • Kirk EC. 2004. Comparative morphology of the eye in primates. Anat Rec A Discov Mol Cell Evol Biol Banner. 281A(1):1095–1103.
  • Kirk EC, Kay RF. 2004. The evolution of high visual acuity in the anthropoidea. In: Ross C, Kay R, editors. Anthropoid origins: new visions. New York (NY): Kluwer/Plenum; p. 539–602.
  • Kronfeld-Schor N, Dayan T. 2008. Activity patterns of rodents: the physiological ecology of biological rhythms. Biol Rhythm Res. 39(3):193–211.
  • Langel J, Yan L, Nunez AA, Smale L. 2014. Behavioral masking and cfos response to light in day- and night-active grass rats. J Biol Rhythms. 29(3):192–202. New York, USA.
  • Langel JL, Ikeno T, Yan L, Nunez AA, Smale L. 2018. Distributions of GABAergic and glutamatergic neurons in the brains of a diurnal and nocturnal rodent. Brain Res. 1700:152–159.
  • Langel JL, Smale L, Esquiva G, Hannibal J. 2015. Central melanopsin projections in the diurnal rodent, Arvicanthis niloticus. Front Neuroanat. 9:93.
  • Lau C, Zhou IY, Cheung MM, Chan KC, Wu EX. 2011. BOLD temporal dynamics of rat superior colliculus and lateral geniculate nucleus following short duration visual stimulation. PLoS ONE. 6(4):e18914.
  • Mahoney M, Bult A, Smale L. 2001. Expression in the suprachiasmatic nucleus and adjacent hypothalamus of Arvicanthis niloticus. J Biol Rhythms. 16(2):149–162.
  • Martı́nez GS, Smale L, Nunez AA. 2002. Diurnal and nocturnal rodents show rhythms in orexinergic neurons. Brain Res. 955(1–2):1–7.
  • McElhinny TL, Smale L, Holekamp KE. 1997. Patterns of body temperature, activity, and reproductive behavior in a tropical murid rodent, Arvicanthis niloticus. Physiol Behav. 62(1):91–96.
  • Montero VM, Jian S. 1995. Induction of c-fos protein by patterned visual stimulation in central visual pathways of the rat. Brain Res. 690:189–199.
  • Morin LP, Allen CN. 2006. The circadian visual system, 2005. Brain Res Rev. 51(1):1–60.
  • Nelson RJ, Zucker I. 1981. Absence of extra-ocular photoreception in diurnal and nocturnal rodents exposed to direct sunlight. Comp Biochem Physiol. 69A:145–148.
  • Nelson W, Tong YL, Lee JK, Halberg F. 1979. Methods for cosinor-rhythmometry. Chronobiologia. 6(4):305–323.
  • Nixon JP, Smale L. 2004. Individual differences in wheel-running rhythms are related to temporal and spatial patterns of activation of orexin A and B cells in a diurnal rodent (Arvicanthis niloticus). Neuroscience. 127:25–34.
  • Novak CM, Smale L, Nunez AA. 2000. Rhythms in Fos expression in brain areas related to the sleep-wake cycle in the diurnal Arvicanthis niloticus. Am J Physiol Regulatory Integrative Comp Physiol. 278:R1267–1274.
  • Nunez AA, Bult A, McElhinny TL, Smale L. 1999. Daily rhythms of fos expression in hypothalamic targets of the suprachiasmatic nucleus in diurnal and nocturnal rodents. J Biol Rhythms. 14(4):300–306.
  • Oelschlager HHA, Nakamura M, Herzog M, Burda H. 2000. Visual system labeled by c-fos immunohistochemistry after light exposure in the ‘blind’ subterranean Zambian mole-rat (Cryptomys anselli). Brain, Behavior and Evolution. 55:209–220.
  • Peichl L. 2005. Diversity of mammalian photoreceptor properties: adaptations to habitat and lifestyle? Anat Rec A Discov Mol Cell Evol Biol. 287A(1):1001–1012.
  • Peichl L, Kunzle H, Vogel P. 2000. Photoreceptor types and distributions in the retinae of insectivores. Visual Neuroscience. 17(6):937–948.
  • Pickard GE. 1989. Entrainment of the circadian rhythm of wheel-running activity is phase shifted by ablation of the intergeniculate leaflet. Brain Res. 494:151–154.
  • Prichard JR, Stoffel RT, Quimby DL, Obermeyer WH, Benca RM, Behan M. 2002. FOS immunoreactivity in rat subcortical visual shell in response to illuminance changes. Neuroscience. 114(3):781–793.
  • Redlin U, Vrang N, Mrosovsky N. 1999. Enhanced masking response to light in hamsters with IGL lesions. J Comp Physiol A. 184:449–456.
  • Refinetti R. 2006. Variability of diurnality in laboratory rodents. J Comp Physiol A. 192:701–714.
  • Refinetti R, Lissen GC, Halberg F. 2007. Procedures for numerical analysis of circadian rhythms. Biol Rhythm Res. 38(4):275–325.
  • Schmitz L, Motani R. 2010. Morphological differences between the eyeballs of nocturnal and diurnal amniotes revisited from optical perspectives of visual environments. Vision Research. 50(10):936–946.
  • Schwartz DM, Smale L. 2005. Individual differences in rhythms of behavioral sleep and its neural substrates in nile grass rats. J Biol Rhythms. 20(6):526–537.
  • Schwartz MD, Nunez AA, Smale L. 2004. Differences in the suprachiasmatic nucleus and lower subparaventricular zone of diurnal and nocturnal rodents. Neuroscience. 127(1):13–23.
  • Shuboni DD, Cramm S, Yan L, Nunez AA, Smale L. 2012. Acute behavioral responses to light and darkness in nocturnal Mus musculus and diurnal Arvicanthis niloticus. J Biol Rhythms. 27(4):299–307.
  • Shuboni DD, Cramm SL, Yan L, Ramanathan C, Cavanaugh BL, Nunez AA, Smale L. 2015. Acute effects of light on the brain and behavior of diurnal Arvicanthis niloticus and nocturnal Mus musculus. Physiol Behavior. 138:75–86.
  • Smale L, McElhinny T, Nixon J, Gubik B, Rose S. 2001. Patterns of wheel running are related to fos expression in the neuropeptide-Y-containing neurons in the intergeniculate leaflet. J Biol Rhythms. 16(2):163–172.
  • Smale L, Nunez AA, Schwartz MD. 2008. Rhythms in a diurnal brain. Biol Rhythm Res. 39(3):305–318.
  • Solovei I, Kreysing M, Lantot C, Kosem S, Peichl L, Cremer T, Guck J, Joffe B. 2009. Nuclear architecture of rod photoreceptor cells adapts to vision in mammalian evolution. Cell. 137(2):356–368.
  • Stephan H, Frahm H, Baron G. 1984. Comparison of brain structure volumes in insectivora and primates. IV. Non-cortical visual structures. J Hirnforsch. 25(4):385–403.
  • Tong YL. 1976. Parameter estimation in studying circadian rhythms. Biometrics. 32(1):85–94.
  • Yan L, Smale L, Nunez A. 2018. Circadian and photic modulation of daily rhythms in diurnal mammals. Eur J Neurosci. Epub doi:10.1111/ejn.14172.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.