Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 36, 2019 - Issue 12
1,007
Views
23
CrossRef citations to date
0
Altmetric
Original Articles

Performance comparison of different interpretative algorithms utilized to derive sleep parameters from wrist actigraphy data

, , , &
Pages 1752-1760 | Received 27 Sep 2019, Accepted 09 Oct 2019, Published online: 28 Oct 2019

References

  • Bland JM, Altman DG. 1999. Measuring agreement in method comparison studies. Stat Methods Med Res. 8:135–160.
  • Buysse DJ, Reynolds CF, Monk TH, Berman SR, Kupfer DJ. 1989. The pittsburgh sleep quality index: a new instrument for psychiatric practice and research. Psychiatry Res. 28:193–213. doi:10.1016/0165-1781(89)90047-4. PMID: 2748771.
  • Coe R 2002. It’s the effect size, stupid: what effect size is and why it is important. Paper presented at: Annu Conf Br Educ Res Assoc. University of Exeter, England. [accessed 2019 Oct 18]. http://www.leeds.ac.uk/educol/documents/00002182.htm
  • Cole RJ, Kripke DF, Gruen W, Mullaney DJ, Gillin JC. 1992. Automatic sleep/wake identification from wrist activity. Sleep. 15:461–469. PMID: 1455130.
  • de Souza L, Benedito-Silva AA, Pires MLN, Poyares D, Tufik S, Calil HM. 2003. Further validation of actigraphy for sleep studies. Sleep. 26:81–85.
  • Foster FG, Kupfer D, Weiss G, Lipponen V, McPartland R, Delgado J. 1972. Mobility recording and cycle research in neuropsychiatry. J Interdiscipl Cycle Res. 3:61–72.
  • Haghayegh S, Khoshnevis S, Smolensky MH, Diller KR. 2019. Accuracy of PurePulse photoplethysmography technology of Fitbit Charge 2 for assessment of heart rate during sleep. Chronobiol Int. 36:927–933. doi:10.1080/07420528.2019.1596947. PMID: 30990098.
  • Haghayegh S, Khoshnevis S, Smolensky MH, Diller KR, Castriotta RJ. 2019a. Performance assessment of new generation Fitbit technology in deriving sleep parameters and stages. Chronobiol Int. doi:10.1080/07420528.2019.1682006
  • Haghayegh S, Khoshnevis S, Smolensky MH, Diller KR, Castriotta RJ. 2019b. Accuracy of wristband Fitbit models in assessing sleep: A systematic review and meta-analysis. J Med Internet Res. doi:10.2196/16273.
  • Jean-Louis G, Kripke DF, Mason WJ, Elliott JA, Youngstedt SD. 2001. Sleep estimation from wrist movement quantified by different actigraphic modalities. J Neurosci Methods. 105:185–191.
  • Kaplan RF, Wang Y, Loparo KA, Kelly MR, Bootzin RR. 2014. Performance evaluation of an automated single-channel sleep-wake detection algorithm. Nat Sci Sleep. 6:113–122. doi:10.2147/NSS.S71159. PMID: 25342922.
  • Kripke DF, Mullaney DJ, Messin S, Wyborney VG. 1978. Wrist actigraphic measures of sleep and rhythms. Electroencephalogr Clin Neurophysiol. 44:674–676.
  • Kupfer DJ, Detre TP, Foster G, Tucker GJ, Delgado J. 1972. The application of delgado’s telemetric mobility recorder for human studies. Behav Biol. 7:585–590.
  • Landis JR, Koch GG. 1977. The measurement of observer agreement for categorical data. Biometrics. 33:159–174. doi:10.2307/2529310. PMID: 843571.
  • Levendowski DJ, Zack N, Rao S, Wong K, Gendreau M, Kranzler J, Zavora T, Westbrook PR. 2009. Assessment of the test–retest reliability of laboratory polysomnography. Sleep Breath. 13:163–167.
  • Morgenthaler T, Alessi C, Friedman L, Owens J, Kapur V, Boehlecke B, Brown T, Chesson A, Coleman J, Lee-Chiong T, et al. 2007. Practice parameters for the use of actigraphy in the assessment of sleep and sleep disorders: an update for 2007. Sleep. 30:519–529. doi:10.1093/sleep/30.4.519. PMID: 17520797.
  • Moses J, Lubin A, Naitoh P, Johnson LC. 1972. Reliability of sleep measures. Psychophysiology. 9:78–82.
  • Mullaney DJ, Kripke DF, Messin S. 1980. Wrist-Actigraphic estimation of sleep time. Sleep. 3:83–92. doi:10.1093/sleep/3.1.83. PMID: 7466128.
  • Portaluppi F, Smolensky MH, Touitou Y. 2010. Ethics and methods for biological rhythm research on animals and human beings. Chronobiol Int. 27:1911–1929. doi:10.3109/07420528.2010.516381. PMID: 20969531.
  • Sadeh A, Sharkey M, Carskadon MA. 1994. Activity-based sleep-wake identification: an empirical test of methodological issues. Sleep. 17:201–207.
  • Van de Water ATM, Holmes A, Hurley DA. 2011. Objective measurements of sleep for non-laboratory settings as alternatives to polysomnography–a systematic review. J Sleep Res. 20:183–200. doi:10.1111/j.1365-2869.2009.00814.x. PMID: 20374444.
  • Wang Y, Loparo KA, Kelly MR, Kaplan RF. 2015. Evaluation of an automated single-channel sleep staging algorithm. Nat Sci Sleep. 7:101–111. doi:10.2147/NSS.S77888. PMID: 26425109.
  • Webster JB, Kripke DF, Messin S, Mullaney DJ, Wyborney G. 1982. An activity-based sleep monitor system for ambulatory use. Sleep. 5:389–399. doi:10.1093/sleep/5.4.389. PMID: 7163726.
  • Wohlgemuth WK, Edinger JD, Fins AI, Sullivan RJ. 1999. How many nights are enough? The short-term stability of sleep parameters in elderly insomniacs and normal sleepers. Psychophysiology. 36:233–244.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.