Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 37, 2020 - Issue 7
157
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Aging-related changes on social synchronization of circadian activity rhythm in a diurnal primate (Callithrix jacchus)

, , &
Pages 980-992 | Received 02 Mar 2020, Accepted 19 May 2020, Published online: 23 Jun 2020

References

  • Abbott D, Barnett D, Colman R, Yamamoto M, Schultz-Darken N. 2003. Aspects of common marmoset basic biology and life history important for biomedical research. Comparative Med. 53:339–350. PMID:14524409
  • Ancoli-Israel S, Gehrman P, Martin J, Shochat T, Marler M, Corey-Bloom J, Levi L. 2003. Increased light exposure consolidates sleep and strengthens circadian rhythms in severe Alzheimer´s disease patients. Behav Sleep Med. 1:22–36. doi:10.1207/s15402010bsm0101_4
  • Aujard F, Cayetanot F, Bentivoglio M, Perret M. 2006. Age-related effects on the biological clock and its behavioral output in a primate. Chronobiol Int. 23:451–460. doi:10.1080/07420520500482090
  • Aujard F, Cayetanot F, Terrien J, Van Someren E. 2007. Attenuated effect of increased daylength on activity rhythm in the old mouse lemur, a non-human primate. Exp Gerontol. 42:1079–1087. doi:10.1016/j.exger.2007.08.007
  • Bessa Z, Melo P, Gonçalves B, Azevedo C. 2018. Mechanisms of social synchrony between circadian activity rhythms in cohabiting marmosets. Chronobiol Int. 35:1–15. doi:10.1080/07420528.2018.1425883
  • Bezerra B, Souto A. 2008. Structure and usage of the vocal repertoire of Callithrix jacchus. Int J Primatol. 29:671–701. doi:10.1007/s10764-008-9250-0
  • Black A, Tilmont E, Handy A, Scott W, Shapses S, Ingram Roth G, Lane M. 2001. A nonhuman primate model of age-related bone loss: A longitudinal study in male and premenopausal female rhesus monkeys. Bone. 28:295–302. doi:10.1016/s8756-3282(00)00452-x
  • Cayetanot F, Van Someren EW, Perret M, Aujard F. 2005. Shortened seasonal photoperiodic cycles accelerate aging of the diurnal and circadian locomotor activity rhythms in a primate. J Biol Rhythms. 20:461–469. doi:10.1177/0748730405279174
  • Czeisler C, Duffy J, Shanahan T, Brown E, Mitchell J, Rimmer D, Ronda J, Silva E, Allan J, Emens J, et al. 1999. Stability, precision, and near-24-hour period of the human circadian pacemaker. Science. 284:2177–2181. doi:10.1126/science.284.5423.2177
  • Davidson A, Menaker M. 2003. Birds of a feather clock together - sometimes: social synchronization of circadian rhythms. Curr Opin Neurobiol. 13:765–769. doi:10.1016/j.conb.2003.10.011
  • Engelberth R 2013. Efeitos da senescência no núcleo supraquiasmático do sagui (Callithrix jacchus): plasticidade morfológica e neuroquímica. [thesis]. Natal (BR): Universidade Federal do Rio Grande do Norte.
  • Engelberth R, Pontes A, Fiuza F, Silva K, Resende N, Azevedo C, Costa M, Cavalcante J, Nascimento E Jr., Gavioli E, et al. 2013. Changes in the suprachiasmatic nucleus during aging: implications for biological rhythms. Psychol Neurosci. 6:287–297. https://repositorio.ufrn.br/jspui/handle/123456789/17235
  • Engelberth R, Silva K, Azevedo C, Gavioli E, Santos J, Soares J, Nascimento E Jr., Cavalcante J, Costa M, Cavalcante J. 2014. Morphological changes in the suprachiasmatic nucleus of aging female marmosets (Callithrix jacchus). Biomed Res Int. 2014:1–10. doi:10.1155/2014/243825
  • Epple G. 1968. Comparative studies on vocalization in marmoset monkeys (Hapalidae). Folia Primatol. 8:1–40. doi:10.1159/000155129
  • Erkert H. 1989. Characteristics of the circadian activity rhythm in common marmosets (Callithrix j. jacchus). Am J Primatol. 17:271–286. doi:10.1002/ajp.1350170403
  • Erkert H, Nagel B, Stephani I. 1986. Light and social effects on the free-running circadian activity rhythm in common marmosets (Callithrix jacchus; Primates): social masking, pseudo-splitting, and relative coordination. Behav Ecol Sociobiol. 18:443–452. doi:10.1007/bf00300520
  • Erkert H, Schardt U. 1991. Social entrainment of circadian activity rhythms in common marmosets, Callithrix j. jacchus (Primates). Ethology. 87:189–202. doi:10.1111/j.1439-0310.1991.tb00246.x
  • Farajnia S, Deboer T, Rohling J, Meijer J, Michel S. 2013. Aging of the suprachiasmatic clock. Neuroscientist. 20:44–55. doi:10.1177/1073858413498936
  • Favreau A, Richard-Yris M, Bertin A, Houdelier C, Lumineau S. 2009. Social influence on circadian behavioural rhythm in vertebrates. Anim Behav. 77:983–989. doi:10.1016/j.anbehav.2009.01.004
  • Fischer K, Austad S. 2011. The development of small primate models for aging research. Ilar J. 52:78–88. doi:10.1093/ilar.52.1.78
  • Fuchikawa T, Eban-Rothschild A, Nagari M, Shemesh Y, Bloch G. 2016. Potent social synchronization can override photic entrainment of circadian rhythms. Nat Commun. 7:1–10. doi:10.1038/ncomms11662
  • Gerber P, Schnell C, Anzenberger G. 2002. Behavioural and cardiophysiological response of common marmosets (Callithrix jacchus) to social and environmental changes. Primates. 43:201–216. doi:10.1007/bf02629648
  • Geula C, Nagykery N, Wu C. 2002. Amyloid-β deposits in the cerebral cortex of the aged common marmoset (Callithrix jacchus): incidence and chemical composition. Acta Neuropathol. 103:48–58. doi:10.1007/s004010100429
  • Glass J, Tardif S, Clements R, Mrosovsky N. 2001. Photic and nonphotic circadian phase resetting in a diurnal primate, the common marmoset. Am J Physiol Regul Integr Comp Physiol. 280:191–197. doi:0.1152/ajpregu.2001.280.1.r1911
  • Gomez D, Barbosa A, Théry M, Aujard F, Perret M. 2012. Age affects photoentrainment in a nocturnal primate. J Biol Rhythms. 27:164–171. doi:10.1177/0748730411435223
  • Gonçalves F, Belísio A, Azevedo C. 2009. Effect of nest box availability on circadian activity rhythm of common marmosets (Callithrix jacchus). Folia Primatol. 80:175–188. doi:10.1159/000230035
  • Gonçalves F, Borges G, Gonçalves B, Cavalcante J, Menezes A, Azevedo C. 2016. Evidence for age-related changes in the circadian activity rhythm of the diurnal primate Callithrix jacchus: a case report. Biol Rhythm Res. 47:395–399. doi:10.1080/09291016.2015.1129695
  • Gutman R, Genzer Y, Chapnik N, Miskin R, Froy O. 2011. Long-lived mice exhibit 24 h locomotor circadian rhythms at young and old age. Exp Gerontol. 46:606–609. doi:10.1016/j.exger.2011.02.015
  • Hastings M, Duffield G, Smith E, Maywood E, Ebling F. 1998. Entrainment of the circadian system of mammals by nonphotic cues. Chronobiol Int. 15:425–445. doi:10.3109/07420529808998700
  • Hoffmann K, Coolen A, Schlumbohm C, Meerlo P, Fuchs E. 2012. Remote long-term registrations of sleep-wake rhythms, core body temperature and activity in marmoset monkeys. Behav Brain Res. 235:113–123. doi:10.1016/j.bbr.2012.07.033
  • Huang Y, Liu R, Wang Q, Someren E, Xu H, Zhou J. 2002. Age associated difference in circadian sleep-wake and rest-activity rhythms. Physiol Behav. 76:597–603. doi:10.1016/s0031-9384(02)00733-3
  • Jilge B. 1993. The ontogeny of circadian rhythms in the rabbit. J Biol Rhythms. 8:247–260. doi:0.1016/s0031-9384(02)00733-31
  • Jilge B. 1995. Ontogeny of the rabbit’s circadian rhythms without an external zeitgeber. Physiol Behav. 58:131–140. doi:10.1016/0031-9384(95)00006-5
  • Kendall A, Lewy A, Sack R. 2001. Effects of aging on the intrinsic circadian period of totally blind humans. J Biol Rhythms. 10:87–95. doi:10.1177/074873040101600110
  • Kondratova A, Kondratov R. 2012. The circadian clock and pathology of the ageing brain. Nat Rev Neurosci. 13:325–335. doi:10.1038/nrn3208
  • Lacreuse A, Herndon J. 2009. Nonhuman primate models of cognitive aging. In: Bizon J, Woods A, editors. Animal models of human cognitive aging. Aging Medicine (pp. 1–30). New Jersey, NJ: Humana Press. doi:10.1007/978-1-59745-422-3_2
  • Mayeda A, Hofstetter J, Possidente B. 1997. Aging lengthens TauDD in C57BL/6J, DBA/2J, and outbred SWR male mice (Mus musculus). Chronobiol Int. 14:19–23. doi:10.3109/07420529709040538
  • Melo P, Gonçalves B, Menezes A, Azevedo C. 2013. Socially adjusted synchrony in the activity profiles of common marmosets in light-dark conditions. Chronobiol Int. 30:818–827. doi:10.3109/07420528.2013.767823
  • Mendes A, Menezes A, Azevedo C. 2008. The influence of social cues on circadian activity rhythm resynchronisation to the light-dark cycle in common marmosets. Callithrix Jacchus Biol Rhythm Res. 39:469–479. doi:10.1080/09291010701682658
  • Menezes A, Moreira L, Azevedo C, Costa S, Castro C. 1993. Behavioral rhythms in the captive common marmoset (Callithrix jacchus) under natural environment conditions. Braz J Med Biol Res. 26:741–745.
  • Menezes A, Moreira L, Menna-Barreto L. 1996. Ontogeny of the locomotor activity in common marmoset (Callithrix jacchus). Biol Rhythm Res. 27:319–328. doi:10.1076/brhm.27.3.319.12970
  • Menna-Barreto L, Wey D. 2007. Ontogênese do sistema de Temporização - A construção e as reformas dos ritmos biológicos ao longo da vida humana. Psicol USP. 18:133–153. doi:10.1590/s0103-65642007000200008
  • Mishima K, Okawa M, Shimizu T, Hishikawa Y. 2001. Diminished melatonin secretion in the elderly caused by insufficient environmental illumination. J Clin Endocrinol Metab. 86:129–134. doi:10.1210/jcem.86.1.7097
  • Mistlberger R, Skene D. 2004. Social influences on mammalian circadian rhythms: animal and human studies. Biol Rev. 79:533–556. doi:10.1017/s1464793103006353
  • Monk T, Reynolds C, Machen M, Kupfer D. 1992. Daily social rhythms in the elderly and their relation to objectively recorded sleep. Sleep. 15:322–329. doi:10.1093/sleep/15.4.322
  • Morin L. 1988. Age-related changes in hamster circadian period, entrainment, and rhythm splitting. J Biol Rhythms. 3:237–248. doi:10.1177/074873048800300302
  • Nishijima K, Saitoh R, Tanaka S, Ohsato-Suzuki M, Ohno T, Kitajima S. 2012. Life span of common marmoset (Callithrix jacchus) at CLEA Japan breeding colony. Biogerontology. 13:439–443. doi:10.1007/s10522-012-9388-1
  • Paul M, Schwartz W. 2007. On the chronobiology of cohabitation. Cold Spring Harb Symp Quant Biol. 72:615–621. doi:10.1101/sqb.2007.72.042
  • Pittendrigh C, Daan S. 1974. Circadian oscillations in rodents: A systematic increase of their frequency with age. Science. 186:548. doi:10.1126/science.186.4163.548
  • Portaluppi F, Smolensky M, Touitou Y. 2010. Ethics and methods for biological rhythm research on animals and human beings. Chronobiol Int. 27:1911–1929. doi:10.3109/07420528.2010.516381
  • Possidente B, McEldowney S, Pabon A. 1995. Aging lengthens circadian period of wheel-running activity in C57BL mice. Physiol Behav. 57:575–579. doi:10.1016/0031-9384(94)00298-j
  • Rajaratnam S, Redman J. 1999. Social contact synchronizes free-running activity rhythms of diurnal palm squirrels. Physiol Behav. 66:20–26. doi:10.1016/s0031-9384(98)00271-6
  • Rana S, Mahmood S. 2010. Circadian rhythm and its role in malignancy. J Circadian Rhythms. 8:3. doi:10.1186/1740-3391-8-3
  • Revell V, Skene D. 2010. Impact of age on human non-visual responses to light. Sleep Biol Rhythms. 8:84–94. doi:10.1111/j.1479-8425.2009.00418.x
  • Rietveld W, Boon M, Korving J, Schravendijk K. 1985. Circadian rhythms in elderly rats. J Interdisciplinary Cycle Res. 16:154.
  • Roenneberg T, Wirz-Justice A, Merrow M. 2003. Life between clocks: daily temporal patterns of human chronotypes. J Biol Rhythms. 18:80–90. doi:10.1177/0748730402239679
  • Rosenberg R, Zee P, Turek F. 1991. Phase response curve to light in young and old hamsters. Am J Physiol. 262:491–495. doi:10.1152/ajpregu.1991.261.2.r491
  • Roth G, Mattison J, Ottinger M, Chachich M, Lane M, Ingram D. 2004. Aging in Rhesus monkeys: relevance to human health interventions. Science. 305:1423–1426. doi:10.1126/science.1102541
  • Serón-Ferré M, Forcelledo M, Torres-Farfan C, Valenzuela F, Rojas A, Vergara M, Rojas-Garcia P, Recabarren M, Valenzuela G. 2013. Impact of chronodisruption during primate pregnancy on the maternal and newborn temperature rhythms. PLoS One. 8:e57710. doi:10.1371/journal.pone.0057710
  • Silva C, Pontes A, Cavalcante J, Azevedo C. 2014. Conspecific vocalisations modulate the circadian activity rhythm of marmosets. Biol Rhythm Res. 45:941–954. doi:10.1080/09291016.2014.939441
  • Stevenson M, Rylands A. 1988. The marmosets, genus Callithrix. In: Mittermeier R, Rylands A, Coimbra-Filho A, Fônseca G, editors. Ecology and behavior of neotropical primates 2. Washington (DC): World Wildlife Foundation; p. 131–222.
  • Tardif S, Araujo A, Arruda M, French J, Sousa M, Yamamoto M. 2008. Reproduction and aging in marmosets and tamarins. In: Atsalis S, Margulis S, Hof P, editors. Primate reproductive aging. interdisciplinary topics in gerontology. Vol. 36. Base, Switzerlandl: Karger. p. 29–48. doi:10.1159/000137678
  • Tranah G, Blackwell T, Ancoli-Israel S, Paudel M, Ensrud K, Cauley J, Redline S, Hillier T, Cummings S, Stone K. 2010. Circadian activity rhythms and mortality: the study of osteoporotic fractures. J Am Geriatr Soc. 58:282–291. doi:10.1111/j.1532-5415.2009.02674.x
  • Valentinuzzi V, Scarbrough K, Takahashi J, Turek F. 1997. Effects of aging on the circadian rhythm of wheel-running activity in C57BL/6 mice. Am J Physiol. 273:1957–1964. doi:10.1152/ajpregu.1997.273.6.r1957
  • Van Gool W, Witting W, Mirmiran M. 1987. Age-related changes in circadian sleep-wakefulness rhythms in male rats isolated from time cues. Brain Res. 413:384. doi:10.1016/0006-8993(87)91034-1
  • Van Reeth O, Zhang Y, Reddy A, Zee P, Turek F. 1993. Aging alters the entraining effects of an activity-inducing stimulus on the circadian clock. Brain Res. 607:286–292. doi:10.1016/0006-8993(93)91518-w
  • Van Someren E, Kessler A, Mirmiran M, Swaab D. 1997. Indirect bright light improves circadian rest-activity rhythm disturbances in demented patients. Biol Psychiatry. 41:955–963. doi:10.1016/s0006-3223(97)89928-3
  • Viswanathan N, Davis F. 1995. Suprachiasmatic nucleus grafts restore circadian function in aged hamsters. Brain Res. 686:10–16. doi:10.1016/0006-8993(95)00423-n
  • Wechselberger E. 1994. Phase-shifting effects of arousal on circadian activity rhythms in Callithrix j. jacchus. In: Thierry B, Anderson J, editors. Current primatology universite Louis Pasteur, Strasbourg, France. p. 223–226.
  • Wechselberger E, Erkert H. 1994. Characteristics of the light-induced phase response of circadian activity rhythms in common marmosets, Callithrix j. jacchus [Primates-Cebidae]. Chronobiol Int. 11:275–284. doi:10.3109/07420529409057243
  • Weinert D. 2005. Ontogenetic development of the mammalian circadian system. Chronobiol Int. 22:179–205. doi:10.1081/cbi-200053473
  • Weinert D, Sitka U, Minors D, Waterhouse J. 1994. The development of circadian rhythmicity in neonates. Early Hum Dev. 36:117–126. doi:10.1016/0378-3782(94)90039-6
  • Weinert H, Weinert D. 1998. Circadian activity rhythms of laboratory mice during the last weeks of their life. Biol Rhythm Res. 29:159–178. doi:10.1076/brhm.29.2.159.1444
  • Weitzman E, Moline M, Czeisler C, Zimmerman J. 1982. Chronobiology of aging: temperature, sleep-wake rhythms and entrainment. Neurobiol Aging. 3:299–309. doi:10.1016/0197-4580(82)90018-5
  • Witting W, Kwa I, Eikelenboom P, Mirmiran M, Swaab D. 1990. Alterations in the circadian rest-activity rhythm in aging and Alzheimer’s disease. Biol Psychiatry. 27:563–572. doi:10.1016/0006-3223(90)90523-5
  • Yoon I, Kripke D, Elliott J, Youngstedt S, Rex K, Hauger R. 2003. Age-related changes of circadian rhythms and sleep-wake cycles. JAGS. 51:1085–1091. doi:10.1016/0006-3223(90)90523-5
  • Zhdanova I, Masuda K, Quasarano-Kourkoulis C, Rosene D, Killiany R, Wang S. 2011. Aging of intrinsic circadian rhythms and sleep in a diurnal nonhuman primate. Macaca Mulatta J Biol Rhythms. 26:149–159. doi:10.1177/0748730410395849

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.