Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 37, 2020 - Issue 8
2,530
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Diurnal, metabolic and thermogenic alterations in a murine model of accelerated aging

, , , , , , , & show all
Pages 1119-1139 | Received 16 Mar 2020, Accepted 01 Jul 2020, Published online: 20 Aug 2020

References

  • Akiguchi I, Pallas M, Budka H, Akiyama H, Ueno M, Han J, Yagi H, Nishikawa T, Chiba Y, Sugiyama H, et al. 2017. SAMP8 mice as a neuropathological model of accelerated brain aging and dementia: Toshio Takeda’s legacy and future directions. Neuropathology. 37(4):293–305. doi:10.1111/neup.12373. eng.
  • Bailey SM, Udoh US, Young ME. 2014. Circadian regulation of metabolism. J Endocrinol. 222(2):R75–96. doi:10.1530/JOE-14-0200
  • Barquissau V, Capel F, Dardevet D, Feillet-Coudray C, Gallinier A, Chauvin MA, Rieusset J, Morio B. 2017. Reactive oxygen species enhance mitochondrial function, insulin sensitivity and glucose uptake in skeletal muscle of senescence accelerated prone mice SAMP8. Free Radic Biol Med. 113:267–279. doi:10.1016/j.freeradbiomed.2017.10.012. eng.
  • Bray M, Shaw C, Moore M, Garcia R, Zanquetta M, Durgan D, Jeong W, Tsai J, Bugger H, Zhang D, et al. 2008. Disruption of the circadian clock within the cardiomyocyte influences myocardial contractile function; metabolism; and gene expression. Am J Physiol Heart Circ Physiol. 294:H1036–H1047. doi:10.1152/ajpheart.01291.2007
  • Bray MS, Ratcliffe WF, Grenett MH, Brewer RA, Gamble KL, Young ME. 2013. Quantitative analysis of light-phase restricted feeding reveals metabolic dyssynchrony in mice. Int J Obes (Lond). 37(6):843–852. doi:10.1038/ijo.2012.137
  • Bunger MK, Walisser JA, Sullivan R, Manley PA, Moran SM, Kalscheur VL, Colman RJ, Bradfield CA. 2005. Progressive arthropathy in mice with a targeted disruption of the Mop3/Bmal-1 locus. Genesis. 41(3):122–132. doi:10.1002/gene.20102. eng.
  • Bunger MK, Wilsbacher LD, Moran SM, Clendenin C, Radcliffe LA, Hogenesch JB, Simon MC, Takahashi JS, Bradfield CA. 2000. Mop3 is an essential component of the master circadian pacemaker in mammals. Cell. 103(7):1009–1017. doi:10.1016/S0092-8674(00)00205-1. eng.
  • Chen CY, Logan RW, Ma T, Lewis DA, Tseng GC, Sibille E, McClung CA. 2016. Effects of aging on circadian patterns of gene expression in the human prefrontal cortex. Proc Natl Acad Sci U S A. 113(1):206–211. doi:10.1073/pnas.1508249112. eng.
  • Chomczynski P, Sacchi N. 1987. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 162(1):156–159. doi:10.1016/0003-2697(87)90021-2. eng.
  • Christoffolete MA, Linardi CC, de Jesus L, Ebina KN, Carvalho SD, Ribeiro MO, Rabelo R, Curcio C, Martins L, Kimura ET, et al. 2004. Mice with targeted disruption of the Dio2 gene have cold-induced overexpression of the uncoupling protein 1 gene but fail to increase brown adipose tissue lipogenesis and adaptive thermogenesis. Diabetes. 53(3):577–584. doi:10.2337/diabetes.53.3.577. eng.
  • Cox KH, Takahashi JS. 2019. Circadian clock genes and the transcriptional architecture of the clock mechanism. J Mol Endocrinol. 63(4):R93–r102. doi:10.1530/JME-19-0153. eng.
  • Damiola F, Le M, Preitner N, Kornmann B, Fleury-Olela F, Schibler U. 2000. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev. 14:2950–2961. doi:10.1101/gad.183500
  • Darcy J, Tseng Y-H. 2019. ComBATing aging-does increased brown adipose tissue activity confer longevity? Geroscience. 41(3):285–296. doi:10.1007/s11357-019-00076-0. eng.
  • Durgan DJ, Tsai JY, Grenett MH, Pat BM, Ratcliffe WF, Villegas-Montoya C, Garvey ME, Nagendran J, Dyck JR, Bray MS, et al. 2011. Evidence suggesting that the cardiomyocyte circadian clock modulates responsiveness of the heart to hypertrophic stimuli in mice. Chronobiol Int. 28(3):187–203. doi:10.3109/07420528.2010.550406. eng.
  • Edery I. 2000. Circadian rhythms in a nutshell. Physiol Genomics. 3:59–74. doi:10.1152/physiolgenomics.2000.3.2.59
  • Evans JA, Davidson AJ. 2013. Health consequences of circadian disruption in humans and animal models. Prog Mol Biol Transl Sci. 119:283–323.
  • Fernandez-Sanchez A, Madrigal-Santillan E, Bautista M, Esquivel-Soto J, Morales-Gonzalez A, Esquivel-Chirino C, Durante-Montiel I, Sanchez-Rivera G, Valadez-Vega C, Morales-Gonzalez JA. 2011. Inflammation, oxidative stress, and obesity. Int J Mol Sci. 12(5):3117–3132. doi:10.3390/ijms12053117
  • Forstermann U. 2008. Oxidative stress in vascular disease: causes, defense mechanisms and potential therapies. Nat Clin Pract Cardiovasc Med. 5(6):338–349. doi:10.1038/ncpcardio1211
  • Gerhart-Hines Z, Feng D, Emmett MJ, Everett LJ, Loro E, Briggs ER, Bugge A, Hou C, Ferrara C, Seale P, et al. 2013. The nuclear receptor Rev-erbα controls circadian thermogenic plasticity. Nature. 503(7476):410–413. doi:10.1038/nature12642
  • Gibson UE, Heid CA, Williams PM. 1996. A novel method for real time quantitative RT-PCR. Genome Res. 6(10):995–1001. doi:10.1101/gr.6.10.995. eng.
  • Golombek DA, Rosenstein RE. 2010. Physiology of circadian entrainment. Physiol Rev. 90(3):1063–1102. doi:10.1152/physrev.00009.2009
  • Hanahan D, Weinberg RA. 2011. Hallmarks of cancer: the next generation. Cell. 144(5):646–674. doi:10.1016/j.cell.2011.02.013
  • Heid CA, Stevens J, Livak KJ, Williams PM. 1996. Real time quantitative PCR. Genome Res. 6(10):986–994. doi:10.1101/gr.6.10.986. eng.
  • Hood S, Amir S. 2017. The aging clock: circadian rhythms and later life. J Clin Invest. 127(2):437–446. doi:10.1172/JCI90328
  • Karuppagounder V, Arumugam S, Babu SS, Palaniyandi SS, Watanabe K, Cooke JP, Thandavarayan RA. 2017. The senescence accelerated mouse prone 8 (SAMP8): A novel murine model for cardiac aging. Ageing Res Rev. 35:291–296. doi:10.1016/j.arr.2016.10.006
  • Kim KH. 1997. Regulation of mammalian acetyl-coenzyme A carboxylase. Annu Rev Nutr. 17:77–99. doi:10.1146/annurev.nutr.17.1.77
  • Kohsaka A, Bass J. 2007. A sense of time: how molecular clocks organize metabolism. Trends Endocrinol Metab. 18(1):4–11. doi:10.1016/j.tem.2006.11.005
  • Lassmann H. 2011. Mechanisms of neurodegeneration shared between multiple sclerosis and Alzheimer’s disease. J Neural Transm (Vienna). 118(5):747–752. doi:10.1007/s00702-011-0607-8
  • Lefta M, Campbell KS, Feng HZ, Jin JP, Esser KA. 2012. Development of dilated cardiomyopathy in Bmal1-deficient mice. Am J Physiol Heart Circ Physiol. 303(4):H475–85. doi:10.1152/ajpheart.00238.2012
  • Longo VD, Panda S. 2016. Fasting, circadian rhythms, and time-restricted feeding in healthy lifespan. Cell Metab. 23(6):1048–1059. doi:10.1016/j.cmet.2016.06.001
  • Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. 2013. The hallmarks of aging. Cell. 153(6):1194–1217. doi:10.1016/j.cell.2013.05.039
  • Marcheva B, Ramsey KM, Buhr ED, Kobayashi Y, Su H, Ko CH, Ivanova G, Omura C, Mo S, Vitaterna MH, et al. 2010. Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature. 466(7306):627–631. doi:10.1038/nature09253. eng.
  • Martino TA, Oudit GY, Herzenberg AM, Tata N, Koletar MM, Kabir GM, Belsham DD, Backx PH, Ralph MR, Sole MJ. 2008. Circadian rhythm disorganization produces profound cardiovascular and renal disease in hamsters. Am J Physiol Regul Integr Comp Physiol. 294(5):R1675–83. doi:10.1152/ajpregu.00829.2007. eng.
  • Morley JE, Armbrecht HJ, Farr SA, Kumar VB. 2012. The senescence accelerated mouse (SAMP8) as a model for oxidative stress and Alzheimer’s disease. Biochim Biophys Acta. 1822(5):650–656. doi:10.1016/j.bbadis.2011.11.015
  • Nomura Y, Okuma Y. 1999. Age-related defects in lifespan and learning ability in SAMP8 mice. Neurobiol Aging. 20(2):111–115. doi:10.1016/S0197-4580(99)00006-8. eng.
  • O’Neill JS, Reddy AB. 2011. Circadian clocks in human red blood cells. Nature. 469(7331):498–503. doi:10.1038/nature09702
  • Pang KC, Miller JP, Fortress A, McAuley JD. 2006. Age-related disruptions of circadian rhythm and memory in the senescence-accelerated mouse (SAMP8). Age. 28(3):283–296. doi:10.1007/s11357-006-9013-9
  • Peliciari-Garcia RA, Bargi-Souza P, Young ME, Nunes MT. 2018. Repercussions of hypo and hyperthyroidism on the heart circadian clock. Chronobiol Int. 35(2):147–159. doi:10.1080/07420528.2017.1388253
  • Peliciari-Garcia RA, Prévide RM, Nunes MT, Young ME. 2016. Interrelationship between 3,5,3´-triiodothyronine and the circadian clock in the rodent heart. Chronobiol Int. 33(10):1444–1454. doi:10.1080/07420528.2016.1229673. eng.
  • Portaluppi F, Smolensky MH, Touitou Y. 2010. Ethics and methods for biological rhythm research on animals and human beings. Chronobiol Int. 27(9–10):1911–1929. doi:10.3109/07420528.2010.516381. eng.
  • Riera CE, Dillin A. 2015. Tipping the metabolic scales towards increased longevity in mammals. Nat Cell Biol. 17(3):196–203. doi:10.1038/ncb3107
  • Silva JE. 2006. Thermogenic mechanisms and their hormonal regulation. Physiol Rev. 86(2):435–464. doi:10.1152/physrev.00009.2005
  • Sreedhar R, Giridharan VV, Arumugam S, Karuppagounder V, Palaniyandi SS, Krishnamurthy P, Quevedo J, Watanabe K, Konishi T, Thandavarayan RA. 2016. Role of MAPK-mediated endoplasmic reticulum stress signaling in the heart during aging in senescence-accelerated prone mice. Biofactors. 42(4):368–375. doi:10.1002/biof.1280
  • Stavinoha M, RaySpellicy J, Hart-Sailors M, Mersmann H, Bray M, Young M. 2004. Diurnal variations in the responsiveness of cardiac and skeletal muscle to fatty acids. Am J Physiol. 287:E878–E887.
  • Storch KF, Lipan O, Leykin I, Viswanathan N, Davis FC, Wong WH, Weitz CJ. 2002. Extensive and divergent circadian gene expression in liver and heart. Nature. 417(6884):78–83. doi:10.1038/nature744. eng.
  • Takahashi JS, Hong HK, Ko CH, McDearmon EL. 2008. The genetics of mammalian circadian order and disorder: implications for physiology and disease. Nat Rev Genet. 9(10):764–775. doi:10.1038/nrg2430. eng.
  • Takeda T, Hosokawa M, Takeshita S, Irino M, Higuchi K, Matsushita T, Tomita Y, Yasuhira K, Hamamoto H, Shimizu K, et al. 1981. A new murine model of accelerated senescence. Mech Ageing Dev. 17(2):183–194. doi:10.1016/0047-6374(81)90084-1
  • Tsai JY, Kienesberger PC, Pulinilkunnil T, Sailors MH, Durgan DJ, Villegas-Montoya C, Jahoor A, Gonzalez R, Garvey ME, Boland B, et al. 2010. Direct regulation of myocardial triglyceride metabolism by the cardiomyocyte circadian clock. J Biol Chem. 285(5):2918–2929. doi:10.1074/jbc.M109.077800. eng.
  • Yamazaki S, Straume M, Tei H, Sakaki Y, Menaker M, Block GD. 2002. Effects of aging on central and peripheral mammalian clocks. Proc Natl Acad Sci U S A. 99(16):10801–10806. doi:10.1073/pnas.152318499. eng.
  • Young M, Razeghi P, Cedars A, Guthrie P, Taegtmeyer H. 2001a. Intrinsic diurnal variations in cardiac metabolism and contractile function. Circ Res. 89:1199–1208. doi:10.1161/hh2401.100741
  • Young M, Razeghi P, Taegtmeyer H. 2001b. Clock genes in the heart: characterization and attenuation with hypertrophy. Circ Res. 88:1142–1150. doi:10.1161/hh1101.091190
  • Young ME, Brewer RA, Peliciari-Garcia RA, Collins HE, He L, Birky TL, Peden BW, Thompson EG, Ammons BJ, Bray MS, et al. 2014. Cardiomyocyte-specific BMAL1 plays critical roles in metabolism, signaling, and maintenance of contractile function of the heart. J Biol Rhythms. 29(4):257–276. doi:10.1177/0748730414543141