Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 37, 2020 - Issue 12
299
Views
7
CrossRef citations to date
0
Altmetric
Report

Wheel-running activity rhythms and masking responses in the diurnal palm squirrel, Funambulus pennantii

, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1693-1708 | Received 10 Jun 2020, Accepted 15 Sep 2020, Published online: 12 Oct 2020

References

  • Aschoff J. 1960. Exogenous and endogenous components in circadian rhythms. In: Frisch L, editor. Cold spring harbor symposia on quantitative biology. Vol. 25. New York (NY): Cold Spring Harbor Laboratory Press; p. 11–28. doi:10.1101/SQB.1960.025.01.004.
  • Aschoff J. 1966. Circadian activity pattern with two peaks. Ecology. 47(4):657–662. doi:10.2307/1933949.
  • Aschoff J. 1979. Circadian rhythms: influences of internal and external factors on the period measured in constant conditions. Z Tierpsychol. 49(3):225–249. doi:10.1111/j.1439-0310.1979.tb00290.x.
  • Aschoff J. 1988. Masking of circadian rhythms by zeitgebers as opposed to entrainment. In: Hekkens WTJM, Kerkhof GA, Rietveld WJ, editors. Trends in chronobiology. Advances in the biosciences (Vol. 73). Oxford (UK): Pergamon; p. 149–161.
  • Aschoff J, von Goetz C. 1989. Masking of circadian activity rhythms in canaries by light and dark. J Biol Rhythms. 4(1):29–38. doi:10.1177/074873048900400102.
  • Barak O, Kronfeld-Schor N. 2013. Activity rhythms and masking response in the diurnal fat sand rat under laboratory conditions. Chronobiol Int. 30(9):1123–1134. doi:10.3109/07420528.2013.805337.
  • Blanchong JA, McElhinny TL, Mahoney MM, Smale L. 1999. Nocturnal and diurnal rhythms in the unstriped Nile rat, Arvicanthis niloticus. J Biol Rhythms. 14(5):364–377. doi:10.1177/074873099129000777.
  • Calisi RM, Bentley GE. 2009. Lab and field experiments: are they the same animal? Horm Behav. 56(1):1–10. doi:10.1016/j.yhbeh.2009.02.010.
  • Castillo C, Molyneux P, Carlson R, Harrington ME. 2011. Restricted wheel access following a light cycle inversion slows re-entrainment without internal desynchrony as measured in Per2Luc mice. Neuroscience. 182:169–176. doi:10.1016/j.neuroscience.2011.02.003
  • Challet E. 2007. Minireview: entrainment of the suprachiasmatic clockwork in diurnal and nocturnal mammals. Endocrinology. 148(12):5648–5655. doi:10.1210/en.2007-0804.
  • Challet E, Pitrosky B, Sicard B, Malan A, Pevet P. 2002. Circadian organization in a diurnal rodent, Arvicanthis ansorgei Thomas 1910: chronotypes, responses to constant lighting conditions, and photoperiodic changes. J Biol Rhythms. 17(1):52–64. doi:10.1177/074873002129002339.
  • Cherukalady R 2018. Behavioural ecology of five-striped squirrel, Funambulus pennanti [PhD thesis]. Varanasi (India): Banaras Hindu University.
  • Cohen R, Kronfeld-Schor N. 2006. Individual variability and photic entrainment of circadian rhythms in golden spiny mice. Physiol Behav. 87(3):563–574. doi:10.1016/j.physbeh.2005.12.010.
  • Cohen R, Smale L, Kronfeld-Schor N. 2009. Plasticity of circadian activity and body temperature rhythms in golden spiny mice. Chronobiol Int. 26(3):430–446. doi:10.1080/07420520902820939.
  • Cohen R, Smale L, Kronfeld-Schor N. 2010. Masking and temporal niche switches in spiny mice. J Biol Rhythms. 25(1):47–52. doi:10.1177/0748730409351672.
  • DeCoursey PJ. 1973. Free-running rhythms and patterns of circadian entrainment in three species of diurnal rodents. J Interdiscip Cycle Res. 4(1):67–77. doi:10.1080/09291017309359368.
  • Dishman RK, Dunn AL, Youngstedt SD, Davis JM, Burgess ML, Wilson SP, Wilson MA. 1996. Increased open field locomotion and decreased striatal GABAA binding after activity wheel running. Physiol Behav. 60(3):699–705. doi:10.1016/0031-9384(96)00102-3.
  • Fogo GM, Goodwin AM, Khacherian OS, Ledbetter BJ, Gall AJ. 2019. The effects of ambient temperature and lighting intensity on wheel-running behavior in a diurnal rodent, the Nile grass rat (Arvicanthis niloticus). J Comp Psychol. 133(2):215–222. doi: 10.1037/com0000154.
  • Fulk GW. 1976. Notes on the Activity, Reproduction, and Social Behavior of Octodon degus. J Mammalogy. 57(3):495–505. doi:10.2307/1379298.
  • Gall AJ, Smale L, Yan L, Nunez AA. 2013. Lesions of the intergeniculate leaflet lead to a reorganization in circadian regulation and a reversal in masking responses to photic stimuli in the Nile grass rat. PLoS One. 8(6):e67387. doi:10.1371/journal.pone.0067387.
  • Hagenauer MH, Lee TM. 2008. Circadian organization of the diurnal Caviomorph rodent, Octodon degus. Biol Rhythm Res. 39(3):269–289. doi:10.1080/09291010701683425.
  • Hut RA, Kronfeld-Schor N, van der Vinne V, De la Iglesia H. 2012. In search of a temporal niche: environmental factors. Prog Brain Res. 199:281–304. doi:10.1016/B978-0-444-59427-3.00017-4
  • Hut RA, Scheper A, Daan S. 2000. Can the circadian system of a diurnal and a nocturnal rodent entrain to ultraviolet light? J Comp Physiol A. 186(7–8):707–715. doi:10.1007/s003590000124.
  • Hut RA, van Oort BE, Daan S. 1999. Natural entrainment without dawn and dusk: the case of the European ground squirrel (Spermophilus citellus). J Biol Rhythms. 14(4):290–299. doi:10.1177/074873099129000704.
  • Johnson CH, Elliott JA, Foster R. 2003. Entrainment of Circadian Programs. Chronobiol Int. 20(5):741–774. doi:10.1081/cbi-120024211.
  • Kas MJ, Edgar DM. 1999. A nonphotic stimulus inverts the diurnal-nocturnal phase preference in Octodon degus. J Neurosci. 19(1):328–333. doi:10.1523/JNEUROSCI.19-01-00328.1999.
  • Katona C, Smale L. 1997. Wheel-running rhythms in Arvicanthis niloticus. Physiol Behav. 61(3):365–372. doi:10.1016/s0031-9384(96)00407-6.
  • Kronfeld-Schor N, Dayan T. 2008. Activity patterns of rodents: the physiological ecology of biological rhythms. Biol Rhythm Res. 39(3):193–211. doi:10.1080/09291010701683268.
  • Kumar D, Singaravel M. 2014. Phase and period responses to short light pulses in a wild diurnal rodent, Funambulus pennantii. Chronobiol Int. 31(4):320–327. doi:10.1076/brhm.30.4.445.1408.
  • Lahiri S, Haldar C. 2009. Response of melatonin receptor MT1 in spleen of a tropical Indian rodent, Funambulus pennantii, to natural solar insolation and different photoperiodic conditions. Chronobiol Int. 26(8):1559–1574. doi:10.3109/07420520903540960.
  • Lahmam M, El M’rabet A, Ouarour A, Pevet P, Challet E, Vuillez P. 2008. Daily behavioral rhythmicity and organization of the suprachiasmatic nuclei in the diurnal rodent, Lemniscomys barbarus. Chronobiol Int. 25(6):882–904. doi:10.1080/07420520802553556.
  • Langel J, Yan L, Nunez AA, Smale L. 2014. Behavioral masking and cFos responses to light in day-and night-active grass rats. J Biol Rhythms. 29(3):192–202. doi:10.1177/0748730414533289.
  • Leise TL, Harrington ME, Molyneux PC, Song I, Queenan H, Zimmerman E, Lall GS, Biello SM. 2013. Voluntary exercise can strengthen the circadian system in aged mice. AGE. 35(6):2137–2152. doi:10.1007/s11357-012-9502-y.
  • Levy O, Dayan T, Kronfeld-Schor N. 2007. The relationship between the golden spiny mouse circadian system and its diurnal activity: an experimental field enclosures and laboratory study. Chronobiol Int. 24(4):599–613. doi:10.1080/07420520701534640.
  • Mammen AP, Jagota A. 2011. Immunocytochemical evidence for different patterns in daily rhythms of VIP and AVP peptides in the suprachiasmatic nucleus of diurnal Funambulus palmarum. Brain Res. 1373:39–47. doi:10.1016/j.brainres.2010.12.018
  • Maor R, Dayan T, Ferguson-Gow H, Jones, KE. 2017. Temporal niche expansion in mammals from a nocturnal ancestor after dinosaur extinction. Nat Ecol Evol. 1(12):1889–1895. doi:10.1038/s41559-017-0366–5
  • Mrosovsky N, Hattar S. 2005. Diurnal mice (Mus musculus) and other examples of temporal niche switching. J Comp Physiol A. 191(11):1011–1024. doi:10.1007/s00359-005-0017-1.
  • Pohl H. 1978. Comparative aspects of circadian rhythms in homeotherms, re-entrainment after phase shifts of the zeitgeber. Int J Chronobiol. 5(4):493–517. PMID:700901
  • Portaluppi F, Smolensky MH, Touitou Y. 2010. Ethics and methods for biological rhythm research on animals and human beings. Chronobiol Int. 27(9–10):1911–1929. doi:10.3109/07420528.2010.516381.
  • Rajaratnam SM, Redman JR. 1997. Effects of daily melatonin administration on circadian activity rhythms in the diurnal Indian palm squirrel (Funambulus pennantii). J Biol Rhythms. 12(4):339–347. doi:10.1177/074873049701200406.
  • Rajaratnam SM, Redman JR. 1998. Entrainment of activity rhythms to temperature cycles in diurnal palm squirrels. Physiol Behav. 63(2):271–277. doi:10.1016/s0031-9384(97)00440-x.
  • Rajaratnam SM, Redman JR. 1999a. Social contact synchronizes free-running activity rhythms of diurnal palm squirrels. Physiol Behav. 66(1):21–26. doi:10.1016/s0031-9384(98)00271-6.
  • Rajaratnam SM, Redman JR. 2001. Circadian locomotor activity rhythms of the diurnal Indian palm squirrel in constant light. Chronobiol Int. 18(1):47–60. doi:10.1081/cbi-100001171.
  • Rajaratnam SMW, Redman JR. 1999b. Light-dark entrainment of circadian activity rhythms of the diurnal Indian palm squirrel (Funambulus pennantii). Biol Rhythm Res. 30(4):445–466. doi:10.1076/brhm.30.4.445.1408.
  • Redlin U. 2001. Neural basis and biological function of masking by light in mammals: suppression of melatonin and locomotor activity. Chronobiol Int. 18(5):737–758. doi:10.1081/cbi-100107511.
  • Redlin U, Hattar S, Mrosovsky N. 2005. The circadian clock mutant mouse: impaired masking response to light. J Comp Physiol A. 191(1):51–59. doi:10.1007/s00359-004-0570-z.
  • Redlin U, Mrosovsky N. 1999. Masking by light in hamsters with SCN lesions. J Comp Physiol A. 184(4):439–448. doi:10.1007/s003590050343.
  • Redlin U, Mrosovsky N. 2004. Nocturnal activity in a diurnal rodent (Arvicanthis niloticus): the importance of masking. J Biol Rhythms. 19(1):58–67. doi:10.1177/0748730403260371.
  • Refinetti R. 2006. Variability of diurnality in laboratory rodents. J Comp Physiol A. 192(7):701–714. doi:10.1007/s00359-006-0093-x.
  • Refinetti R. 2007. Enhanced circadian photoresponsiveness after prolonged dark adaptation in seven species of diurnal and nocturnal rodents. Physiol Behav. 90(2–3):431–437. doi:10.1016/j.physbeh.2006.10.004.
  • Refinetti R. 2015. Comparison of light, food, and temperature as environmental synchronizers of the circadian rhythm of activity in mice. J Physiol Sci. 65(4):359–366. doi:10.1007/s12576-015-0374-7.
  • Refinetti R, Earle G, Kenagy GJ. 2019. Exploring determinants of behavioral chronotype in a diurnal-rodent model of human physiology. Physiol Behav. 199:146–153. doi:10.1016/j.physbeh.2018.11.019
  • Roll U, Dayan T, Kronfeld-Schor N. 2006. On the role of phylogeny in determining activity patterns of rodents. Evolutionary Ecology. 20(5):479–490. doi:10.1007/s10682-006-0015-y.
  • Schottner K, Limbach A, Weinert D. 2011. Re-entrainment behavior of Djungarian hamsters (Phodopus sungorus) with different rhythmic phenotype following light-dark shifts. Chronobiol Int. 28(1):58–69. doi:10.3109/07420528.2010.530364.
  • Schrader JA, Walaszczyk EJ, Smale L. 2009. Changing patterns of daily rhythmicity across reproductive states in diurnal female Nile grass rats (Arvicanthis niloticus). Physiol Behav. 98(5):547–556. doi:10.1016/j.physbeh.2009.08.012.
  • Schumann DM, Cooper HM, Hofmeyr MD, Bennett NC. 2005. Circadian rhythm of locomotor activity in the four-striped field mouse, Rhabdomys pumilio: a diurnal African rodent. Physiol Behav. 85(3):231–239. doi:10.1016/j.physbeh.2005.03.024.
  • Seth P, Prasad MR. 1969. Reproductive cycle of the female five-striped Indian palm squirrel, Funambulus pennanti (Wroughton). J Reprod Fertil. 20(2):211–222. doi:10.1530/jrf.0.0200211.
  • Shuboni DD, Agha AA, Groves TK, Gall AJ. 2016. The contribution of the pineal gland on daily rhythms and masking in diurnal grass rats, Arvicanthis niloticus. Behav Processes. 128:1–8. doi:10.1016/j.beproc.2016.03.007
  • Shuboni DD, Cramm S, Yan L, Nunez AA, Smale L. 2012. Acute behavioral responses to light and darkness in nocturnal Mus musculus and diurnal Arvicanthis niloticus. J Biol Rhythms. 27(4):299–307. doi:10.1177/0748730412449723.
  • Smale L, Lee T, Nunez AA. 2003. Mammalian diurnality: some facts and gaps. J Biol Rhythms. 18(5):356–366. doi:10.1177/0748730403256651.
  • Soni SK, Kumar D, Singaravel M. 2020. Melatonin-induced phase and dose responses in a diurnal mammal, Funambulus pennantii. Chronobiol Int. 37(5):641–651. doi:10.1080/07420528.2020.1758127.
  • Tachinardi P, Tøien Ø, Valentinuzzi VS, Buck CL, Oda GA. 2015. Nocturnal to diurnal switches with spontaneous suppression of wheel-running behavior in a subterranean rodent. PloS One. 10(10): e0140500. doi:10.1371/journal.pone.0140500
  • Tal-Krivisky K, Kronfeld-Schor N, Einat H. 2015. Voluntary exercise enhances activity rhythms and ameliorates anxiety- and depression-like behaviors in the sand rat model of circadian rhythm-related mood changes. Physiol Behav. 151:441–447. doi:10.1016/j.physbeh.2015.08.002 151
  • Tomotani BM, Flores DE, Tachinardi P, Paliza JD, Oda GA, Valentinuzzi VS. 2012. Field and laboratory studies provide insights into the meaning of day-time activity in a subterranean rodent (Ctenomys aff. knighti), the tuco-tuco. PLoS One. 7(5):e37918. doi:10.1371/journal.pone.0037918.
  • Van Hooser SD, Nelson SB. 2006. The squirrel as a rodent model of the human visual system. Visual Neuroscience. 23(5):765–778. doi:10.1017/S0952523806230098
  • Vivanco P, MÁ R, Madrid JA. 2010a. Pacemaker phase control versus masking by light: setting the circadian chronotype in dual Octodon degus. Chronobiol Int. 27(7):1365–1379. doi:10.3109/07420528.2010.502984.
  • Vivanco P, MÁ R, Madrid JA. 2010b. Temperature cycles trigger nocturnalism in the diurnal homeotherm Octodon degus. Chronobiol Int. 27(3):517–534. doi:10.3109/07420521003743660.
  • Vivanco P, Rol MA, Madrid JA. 2009. Two steady-entrainment phases and graded masking effects by light generate different circadian chronotypes in Octodon degus. Chronobiol Int. 26(2):219–241. doi:10.1080/07420520902768203.
  • Weinert D, Schottner K, Muller L, Wienke A. 2016. Intensive voluntary wheel running may restore circadian activity rhythms and improves the impaired cognitive performance of arrhythmic Djungarian hamsters. Chronobiol Int. 33(9):1161–1170. doi:10.1080/07420528.2016.1205083.
  • Weinert D, Weinandy R, Gattermann R. 2007. Photic and non-photic effects on the daily activity pattern of Mongolian gerbils. Physiol Behav. 90(2–3):325–333. doi:10.1016/j.physbeh.2006.09.019.
  • Wright KP Jr, McHill AW, Birks BR, Griffin BR, Rusterholz T, Chinoy ED. 2013. Entrainment of the human circadian clock to the natural light-dark cycle. Curr Biol. 23(16):1554–1558. doi:10.1016/j.cub.2013.06.039.
  • Yassumoto TI, Tachinardi P, Oda GA, Valentinuzzi VS. 2019. Acute effects of light and darkness on the activity and temperature rhythms of a subterranean rodent, the Anillaco tuco-tuco. Physiol Behav. 210:112645. doi:10.1016/j.physbeh.2019.112645

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.