Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 40, 2023 - Issue 1
307
Views
2
CrossRef citations to date
0
Altmetric
Review Article

Circadian regulation of cardiac muscle function and protein degradation

Pages 4-12 | Received 23 Apr 2021, Accepted 13 Jul 2021, Published online: 14 Sep 2021

References

  • Alibhai FJ, Tsimakouridze EV, Chinnappareddy N, Wright DC, Billia F, O’Sullivan ML, Pyle WG, Sole MJ, Martino TA. 2014. Short-term disruption of diurnal rhythms after murine myocardial infarction adversely affects long-term myocardial structure and function. Circ Res. 114:1713–1722. doi:10.1161/CIRCRESAHA.114.302995
  • Anea CB, Zhang M, Stepp DW, Simkins GB, Reed G, Fulton DJ, Rudic RD. 2009. Vascular disease in mice with a dysfunctional circadian clock. Circulation. 119:1510–1517. doi:10.1161/CIRCULATIONAHA.108.827477
  • Bass J, Lazar MA. 2016. Circadian time signatures of fitness and disease. Science. 354:994–999. doi:10.1126/science.aah4965
  • Billon C, Sitaula S, Burris TP. 2016. Inhibition of RORalpha/gamma suppresses atherosclerosis via inhibition of both cholesterol absorption and inflammation. Molecular Metabolism. 5:997–1005. doi:10.1016/j.molmet.2016.07.001
  • Bray MS, Shaw CA, Moore MW, Garcia RA, Zanquetta MM, Durgan DJ, Jeong WJ, Tsai JY, Bugger H, Zhang D, et al. 2008. Disruption of the circadian clock within the cardiomyocyte influences myocardial contractile function, metabolism, and gene expression. Am J Physiol Heart Circ Physiol. 294:H1036–1047. doi:10.1152/ajpheart.01291.2007
  • Candasamy AJ, Haworth RS, Cuello F, Ibrahim M, Aravamudhan S, Kruger M, Holt MR, Terracciano CM, Mayr M, Gautel M, et al. 2014. Phosphoregulation of the titin-cap protein telethonin in cardiac myocytes. J Biol Chem. 289:1282–1293. doi:10.1074/jbc.M113.479030
  • Chamova T, Bichev S, Todorov T, Gospodinova M, Taneva A, Kastreva K, Zlatareva D, Krupev M, Hadjiivanov R, Guergueltcheva V, et al. 2018. Limb girdle muscular dystrophy 2G in a religious minority of Bulgarian Muslims homozygous for the c.75G>A, p.Trp25X mutation. Neuromuscular Disord: NMD. 28:625–632. doi:10.1016/j.nmd.2018.05.005
  • Chen SN, Czernuszewicz G, Tan Y, Lombardi R, Jin J, Willerson JT, Marian AJ. 2012. Human molecular genetic and functional studies identify TRIM63, encoding Muscle RING Finger Protein 1, as a novel gene for human hypertrophic cardiomyopathy. Circ Res. 111:907–919. doi:10.1161/CIRCRESAHA.112.270207
  • Chen Z, Yoo SH, Takahashi JS. 2018. Development and therapeutic potential of small-molecule modulators of circadian systems. Annu Rev Pharmacol Toxicol. 58:231–252. doi:10.1146/annurev-pharmtox-010617-052645
  • Cienfuegos S, Gabel K, Kalam F, Ezpeleta M, Wiseman E, Pavlou V, Lin S, Oliveira ML, Varady KA. 2020. Effects of 4- and 6-h time-restricted feeding on weight and cardiometabolic health: a randomized controlled trial in adults with obesity. Cell Metab. 32(366–378):e363. doi:10.1016/j.cmet.2020.06.018
  • Curtis AM, Cheng Y, Kapoor S, Reilly D, Price TS, Fitzgerald GA. 2007. Circadian variation of blood pressure and the vascular response to asynchronous stress. Proc Natl Acad Sci U S A. 104:3450–3455. doi:10.1073/pnas.0611680104
  • Davidson AJ, Sellix MT, Daniel J, Yamazaki S, Menaker M, Block GD. 2006. Chronic jet-lag increases mortality in aged mice. Curr Biol. 16:R914–916. doi:10.1016/j.cub.2006.09.058
  • Doi M, Takahashi Y, Komatsu R, Yamazaki F, Yamada H, Haraguchi S, Emoto N, Okuno Y, Tsujimoto G, Kanematsu A, et al. 2010. Salt-sensitive hypertension in circadian clock-deficient Cry-null mice involves dysregulated adrenal Hsd3b6. Nat Med. 16:67–74. doi:10.1038/nm.2061
  • Durgan DJ, Young ME. 2010. The cardiomyocyte circadian clock: emerging roles in health and disease. Circ Res. 106:647–658. doi:10.1161/CIRCRESAHA.109.209957
  • Francis A, Sunitha B, Vinodh K, Polavarapu K, Katkam SK, Modi S, Bharath MM, Gayathri N, Nalini A, Thangaraj K. 2014. Novel TCAP mutation c.32C>A causing limb girdle muscular dystrophy 2G. PLoS One. 9:e102763. doi:10.1371/journal.pone.0102763
  • Frank D, Frey N. 2011. Cardiac Z-disc signaling network. J Biol Chem. 286:9897–9904. doi:10.1074/jbc.R110.174268
  • Gabel K, Cienfuegos S, Kalam F, Ezpeleta M, Varady KA. 2021. Time-restricted eating to improve cardiovascular health. Curr Atheroscler Rep. 23:22. doi:10.1007/s11883-021-00922-7
  • Galvez AS, Diwan A, Odley AM, Hahn HS, Osinska H, Melendez JG, Robbins J, Lynch RA, Marreez Y, Dorn GW 2nd. 2007. Cardiomyocyte degeneration with calpain deficiency reveals a critical role in protein homeostasis. Circ Res. 100:1071–1078. doi:10.1161/01.RES.0000261938.28365.11
  • Gill S, Le HD, Melkani GC, Panda S. 2015. Time-restricted feeding attenuates age-related cardiac decline in drosophila. Science. 347:1265–1269. doi:10.1126/science.1256682
  • Gregorio CC, Trombitas K, Centner T, Kolmerer B, Stier G, Kunke K, Suzuki K, Obermayr F, Herrmann B, Granzier H, et al. 1998. The NH2 terminus of titin spans the Z-disc: its interaction with a novel 19-kD ligand (T-cap) is required for sarcomeric integrity. J Cell Biol. 143:1013–1027. doi:10.1083/jcb.143.4.1013
  • Han C, Wirianto M, Kim E, Burish MJ, Yoo SH, Chen Z. 2021. Clock-modulating activities of the anti-arrhythmic drug moricizine. Clocks Sleep. 3:351–365. doi:10.3390/clockssleep3030022
  • Hatori M, Vollmers C, Zarrinpar A, DiTacchio L, Bushong EA, Gill S, Leblanc M, Chaix A, Joens M, Fitzpatrick JA, et al. 2012. Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab. 15:848–860. doi:10.1016/j.cmet.2012.04.019
  • Henning RH, Brundel B. 2017. Proteostasis in cardiac health and disease. Nat Rev Cardiol. 14:637–653. doi:10.1038/nrcardio.2017.89
  • Hermida RC, Crespo JJ, Otero A, Dominguez-Sardina M, Moya A, Rios MT, Castineira MC, Callejas PA, Pousa L, Sineiro E, et al. 2018. Asleep blood pressure: significant prognostic marker of vascular risk and therapeutic target for prevention. Eur Heart J. 39:4159–4171. doi:10.1093/eurheartj/ehy475
  • Hershberger RE, Parks SB, Kushner JD, Li D, Ludwigsen S, Jakobs P, Nauman D, Burgess D, Partain J, Litt M. 2008. Coding sequence mutations identified in MYH7, TNNT2, SCN5A, CSRP3, LBD3, and TCAP from 313 patients with familial or idiopathic dilated cardiomyopathy. Clin Transl Sci. 1:21–26. doi:10.1111/j.1752-8062.2008.00017.x
  • Hirano A, Yumimoto K, Tsunematsu R, Matsumoto M, Oyama M, Kozuka-Hata H, Nakagawa T, Lanjakornsiripan D, Nakayama KI, Fukada Y. 2013. FBXL21 regulates oscillation of the circadian clock through ubiquitination and stabilization of cryptochromes. Cell. 152:1106–1118. doi:10.1016/j.cell.2013.01.054
  • Hirtle-Lewis M, Desbiens K, Ruel I, Rudzicz N, Genest J, Engert JC, Giannetti N. 2013. The genetics of dilated cardiomyopathy: a prioritized candidate gene study of LMNA, TNNT2, TCAP, and PLN. Clin Cardiol. 36:628–633.
  • Hodge BA, Zhang X, Gutierrez-Monreal MA, Cao Y, Hammers DW, Yao Z, Wolff CA, Du P, Kemler D, Judge AR, et al. 2019. MYOD1 functions as a clock amplifier as well as a critical co-factor for downstream circadian gene expression in muscle. Elife. 8. doi:10.7554/eLife.43017
  • Ibrahim M, Siedlecka U, Buyandelger B, Harada M, Rao C, Moshkov A, Bhargava A, Schneider M, Yacoub MH, Gorelik J, et al. 2013. A critical role for Telethonin in regulating t-tubule structure and function in the mammalian heart. Hum Mol Genet. 22:372–383. doi:10.1093/hmg/dds434
  • Inokawa H, Umemura Y, Shimba A, Kawakami E, Koike N, Tsuchiya Y, Ohashi M, Minami Y, Cui G, Asahi T, et al. 2020. Chronic circadian misalignment accelerates immune senescence and abbreviates lifespan in mice. Sci Rep. 10:2569. doi:10.1038/s41598-020-59541-y
  • Jeyaraj D, Haldar SM, Wan X, McCauley MD, Ripperger JA, Hu K, Lu Y, Eapen BL, Sharma N, Ficker E, et al. 2012. Circadian rhythms govern cardiac repolarization and arrhythmogenesis. Nature. 483:96–99. doi:10.1038/nature10852
  • Kedar V, McDonough H, Arya R, Li HH, Rockman HA, Patterson C. 2004. Muscle-specific RING finger 1 is a bona fide ubiquitin ligase that degrades cardiac troponin I. Proc Natl Acad Sci U S A. 101:18135–18140. doi:10.1073/pnas.0404341102
  • Kervezee L, Kosmadopoulos A, Boivin DB. 2020. Metabolic and cardiovascular consequences of shift work: the role of circadian disruption and sleep disturbances. Eur J Neurosci. 51:396–412. doi:10.1111/ejn.14216
  • Knoll R, Hoshijima M, Hoffman HM, Person V, Lorenzen-Schmidt I, Bang ML, Hayashi T, Shiga N, Yasukawa H, Schaper W, et al. 2002. The cardiac mechanical stretch sensor machinery involves a Z disc complex that is defective in a subset of human dilated cardiomyopathy. Cell. 111:943–955. doi:10.1016/S0092-8674(02)01226-6
  • Knoll R, Linke WA, Zou P, Miocic S, Kostin S, Buyandelger B, Ku CH, Neef S, Bug M, Schafer K, et al. 2011. Telethonin deficiency is associated with maladaptation to biomechanical stress in the mammalian heart. Circ Res. 109:758–769. doi:10.1161/CIRCRESAHA.111.245787
  • Kojima S, Shingle DL, Green CB. 2011. Post-transcriptional control of circadian rhythms. J Cell Sci. 124:311–320. doi:10.1242/jcs.065771
  • Levi F, Schibler U. 2007. Circadian rhythms: mechanisms and therapeutic implications. Annu Rev Pharmacol Toxicol. 47:593–628. doi:10.1146/annurev.pharmtox.47.120505.105208
  • Markert CD, Meaney MP, Voelker KA, Grange RW, Dalley HW, Cann JK, Ahmed M, Bishwokarma B, Walker SJ, Yu SX, et al. 2010. Functional muscle analysis of the Tcap knockout mouse. Hum Mol Genet. 19:2268–2283. doi:10.1093/hmg/ddq105
  • Martin AF. 1981. Turnover of cardiac troponin subunits. Kinetic evidence for a precursor pool of troponin-I. J Biol Chem. 256:964–968. doi:10.1016/S0021-9258(19)70073-8
  • Martin AF, Rabinowitz M, Blough R, Prior G, Zak R. 1977. Measurements of half-life of rat cardiac myosin heavy chain with leucyl-tRNA used as precursor pool. J Biol Chem. 252:3422–3429. doi:10.1016/S0021-9258(17)40408-X
  • Martin TG, Kirk JA. 2020. Under construction: the dynamic assembly, maintenance, and degradation of the cardiac sarcomere. J Mol Cell Cardiol. 148:89–102.
  • Martino T, Arab S, Straume M, Belsham DD, Tata N, Cai F, Liu P, Trivieri M, Ralph M, Sole MJ. 2004. Day/night rhythms in gene expression of the normal murine heart. J Mol Med (Berl). 82:256–264. doi:10.1007/s00109-003-0520-1
  • Martino TA, Young ME. 2015. Influence of the cardiomyocyte circadian clock on cardiac physiology and pathophysiology. J Biol Rhythms. 30:183–205. doi:10.1177/0748730415575246
  • McLendon PM, Robbins J. 2015. Proteotoxicity and cardiac dysfunction. Circ Res. 116:1863–1882. doi:10.1161/CIRCRESAHA.116.305372
  • Melkani GC, Panda S. 2017. Time-restricted feeding for prevention and treatment of cardiometabolic disorders. J Physiol. 595:3691–3700. doi:10.1113/JP273094
  • Mohawk JA, Green CB, Takahashi JS. 2012. Central and peripheral circadian clocks in mammals. Annu Rev Neurosci. 35:445–462. doi:10.1146/annurev-neuro-060909-153128
  • Montaigne D, Marechal X, Modine T, Coisne A, Mouton S, Fayad G, Ninni S, Klein C, Ortmans S, Seunes C, et al. 2018. Daytime variation of perioperative myocardial injury in cardiac surgery and its prevention by Rev-Erbalpha antagonism: a single-centre propensity-matched cohort study and a randomised study. Lancet. 391:59–69. doi:10.1016/S0140-6736(17)32132-3
  • Moreira ES, Wiltshire TJ, Faulkner G, Nilforoushan A, Vainzof M, Suzuki OT, Valle G, Reeves R, Zatz M, Passos-Bueno MR, et al. 2000. Limb-girdle muscular dystrophy type 2G is caused by mutations in the gene encoding the sarcomeric protein telethonin. Nat Genet. 24:163–166. doi:10.1038/72822
  • Mues A, Van Der Ven PF, Young P, Furst DO, Gautel M. 1998. Two immunoglobulin-like domains of the Z-disc portion of titin interact in a conformation-dependent way with telethonin. FEBS Lett. 428:111–114. doi:10.1016/S0014-5793(98)00501-8
  • Mure LS, Le HD, Benegiamo G, Chang MW, Rios L, Jillani N, Ngotho M, Kariuki T, Dkhissi-Benyahya O, Cooper HM, et al. 2018. Diurnal transcriptome atlas of a primate across major neural and peripheral tissues. Science. 359.
  • Nakai A, Yamaguchi O, Takeda T, Higuchi Y, Hikoso S, Taniike M, Omiya S, Mizote I, Matsumura Y, Asahi M, et al. 2007. The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat Med. 13:619–624. doi:10.1038/nm1574
  • Nohara K, Nemkov T, D’Alessandro A, Yoo SH, Chen Z. 2019. Coordinate Regulation of cholesterol and bile acid metabolism by the clock modifier nobiletin in metabolically challenged old mice. Int J Mol Sci. 20.
  • Ono S. 2010. Dynamic regulation of sarcomeric actin filaments in striated muscle. Cytoskeleton (Hoboken). 67:677–692.
  • Panda S, Antoch MP, Miller BH, Su AI, Schook AB, Straume M, Schultz PG, Kay SA, Takahashi JS, Hogenesch JB. 2002. Coordinated transcription of key pathways in the mouse by the circadian clock. Cell. 109:307–320. doi:10.1016/S0092-8674(02)00722-5
  • Partch CL. 2020. Orchestration of Circadian timing by macromolecular protein assemblies. J Mol Biol. 432:3426–3448. doi:10.1016/j.jmb.2019.12.046
  • Paschos GK, FitzGerald GA. 2010. Circadian clocks and vascular function. Circ Res. 106:833–841. doi:10.1161/CIRCRESAHA.109.211706
  • Podobed P, Pyle WG, Ackloo S, Alibhai FJ, Tsimakouridze EV, Ratcliffe WF, Mackay A, Simpson J, Wright DC, Kirby GM, et al. 2014a. The day/night proteome in the murine heart. Am J Physiol Regul Integr Comp Physiol. 307:R121–137. doi:10.1152/ajpregu.00011.2014
  • Podobed PS, Alibhai FJ, Chow CW, Martino TA. 2014b. Circadian regulation of myocardial sarcomeric Titin-cap (Tcap, telethonin): identification of cardiac clock-controlled genes using open access bioinformatics data. PLoS One. 9:e104907. doi:10.1371/journal.pone.0104907
  • Portbury AL, Willis MS, Patterson C. 2011. Tearin’ up my heart: proteolysis in the cardiac sarcomere. J Biol Chem. 286:9929–9934. doi:10.1074/jbc.R110.170571
  • Ramsey AM, Stowie A, Castanon-Cervantes O, Davidson AJ. 2020. Environmental Circadian disruption increases stroke severity and dysregulates immune response. J Biol Rhythms. 35:368–376. doi:10.1177/0748730420929450
  • Reitz CJ, Alibhai FJ, Khatua TN, Rasouli M, Bridle BW, Burris TP, Martino TA. 2019. SR9009 administered for one day after myocardial ischemia-reperfusion prevents heart failure in mice by targeting the cardiac inflammasome. Commun Biol. 2:353. doi:10.1038/s42003-019-0595-z
  • Rotter D, Grinsfelder DB, Parra V, Pedrozo Z, Singh S, Sachan N, Rothermel BA. 2014. Calcineurin and its regulator, RCAN1, confer time-of-day changes in susceptibility of the heart to ischemia/reperfusion. J Mol Cell Cardiol. 74:103–111. doi:10.1016/j.yjmcc.2014.05.004
  • Rotter D, Rothermel BA. 2012. Targets, trafficking, and timing of cardiac autophagy. Pharmacol Res. 66:494–504. doi:10.1016/j.phrs.2012.10.001
  • Rudolph F, Huttemeister J, Da Silva Lopes K, Juttner R, Yu L, Bergmann N, Friedrich D, Preibisch S, Wagner E, Lehnart SE, et al. 2019. Resolving titin’s lifecycle and the spatial organization of protein turnover in mouse cardiomyocytes. Proc Natl Acad Sci U S A. 116:25126–25136. doi:10.1073/pnas.1904385116
  • Sachan N, Dey A, Rotter D, Grinsfelder DB, Battiprolu PK, Sikder D, Copeland V, Oh M, Bush E, Shelton JM, et al. 2011. Sustained hemodynamic stress disrupts normal circadian rhythms in calcineurin-dependent signaling and protein phosphorylation in the heart. Circ Res. 108:437–445. doi:10.1161/CIRCRESAHA.110.235309
  • Scheer FA, Hilton MF, Mantzoros CS, Shea SA. 2009. Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc Natl Acad Sci U S A. 106:4453–4458. doi:10.1073/pnas.0808180106
  • Schilperoort M, Rensen PCN, Kooijman S. 2020. Time for novel strategies to mitigate cardiometabolic risk in shift workers. Trends Endocrinol Metab. 31:952–964. doi:10.1016/j.tem.2020.10.005
  • Schroder EA, Lefta M, Zhang X, Bartos DC, Feng HZ, Zhao Y, Patwardhan A, Jin JP, Esser KA, Delisle BP. 2013. The cardiomyocyte molecular clock, regulation of Scn5a, and arrhythmia susceptibility. Am J Physiol Cell Physiol. 304:C954–965. doi:10.1152/ajpcell.00383.2012
  • Schroeder AM, Colwell CS. 2013. How to fix a broken clock. Trends Pharmacol Sci. 34:605–619.
  • Seo DY, Yoon CS, Dizon LA, Lee SR, Youm JB, Yang WS, Kwak HB, Ko TH, Kim HK, Han J, et al. 2020. Circadian modulation of the cardiac proteome underpins differential adaptation to morning and evening exercise training: an LC-MS/MS analysis. Pflugers Arch. 472:259–269. doi:10.1007/s00424-020-02350-z
  • Smolensky MH, Hermida RC, Geng YJ. 2020. Chronotherapy of cardiac and vascular disease: timing medications to circadian rhythms to optimize treatment effects and outcomes. Curr Opin Pharmacol. 57:41–48. doi:10.1016/j.coph.2020.10.014
  • Storch KF, Lipan O, Leykin I, Viswanathan N, Davis FC, Wong WH, Weitz CJ. 2002. Extensive and divergent circadian gene expression in liver and heart. Nature. 417:78–83. doi:10.1038/nature744
  • Sundar IK, Yao H, Sellix MT, Rahman I. 2015. Circadian molecular clock in lung pathophysiology. Am J Physiol Lung Cell Mol Physiol. 309:L1056–1075. doi:10.1152/ajplung.00152.2015
  • Takahashi JS. 2017. Transcriptional architecture of the mammalian circadian clock. Nat Rev Genet. 18:164–179. doi:10.1038/nrg.2016.150
  • Thosar SS, Shea SA. 2021. Circadian control of human cardiovascular function. Curr Opin Pharmacol. 57:89–97. doi:10.1016/j.coph.2021.01.002
  • Tian LF, Li HY, Jin BF, Pan X, Man JH, Zhang PJ, Li WH, Liang B, Liu H, Zhao J, et al. 2006. MDM2 interacts with and downregulates a sarcomeric protein, TCAP. Biochem Biophys Res Commun. 345:355–361. doi:10.1016/j.bbrc.2006.04.108
  • Tsimakouridze EV, Alibhai FJ, Martino TA. 2015. Therapeutic applications of circadian rhythms for the cardiovascular system. Front Pharmacol. 6:77. doi:10.3389/fphar.2015.00077
  • Valle G, Faulkner G, De Antoni A, Pacchioni B, Pallavicini A, Pandolfo D, Tiso N, Toppo S, Trevisan S, Lanfranchi G. 1997. Telethonin, a novel sarcomeric protein of heart and skeletal muscle. FEBS Lett. 415:163–168. doi:10.1016/S0014-5793(97)01108-3
  • Villanueva JE, Livelo C, Trujillo AS, Chandran S, Woodworth B, Andrade L, Le HD, Manor U, Panda S, Melkani GC. 2019. Time-restricted feeding restores muscle function in Drosophila models of obesity and circadian-rhythm disruption. Nat Commun. 10:2700. doi:10.1038/s41467-019-10563-9
  • Wallach T, Kramer A. 2015. Chemical chronobiology: toward drugs manipulating time. FEBS Lett. 589:1530–1538. doi:10.1016/j.febslet.2015.04.059
  • Wang Y, Chen B, Huang CK, Guo A, Wu J, Zhang X, Chen R, Chen C, Kutschke W, Weiss RM, et al. 2018. Targeting calpain for heart failure therapy: implications from multiple murine models. JACC Basic Transl Sci. 3:503–517. doi:10.1016/j.jacbts.2018.05.004
  • Wirianto M, Yang J, Kim E, Gao S, Paudel KR, Choi JM, Choe J, Gloston GF, Ademoji P, Parakramaweera R, et al. 2020. The GSK-3beta-FBXL21 axis contributes to Circadian TCAP degradation and skeletal muscle function. Cell Rep. 32:108140.
  • Witt CC, Witt SH, Lerche S, Labeit D, Back W, Labeit S. 2008. Cooperative control of striated muscle mass and metabolism by MuRF1 and MuRF2. EMBO J. 27:350–360. doi:10.1038/sj.emboj.7601952
  • Witt SH, Granzier H, Witt CC, Labeit S. 2005. MURF-1 and MURF-2 target a specific subset of myofibrillar proteins redundantly: towards understanding MURF-dependent muscle ubiquitination. J Mol Biol. 350:713–722. doi:10.1016/j.jmb.2005.05.021
  • Xu W, Jain MK, Zhang L. 2020. Molecular link between circadian clocks and cardiac function: a network of core clock, slave clock, and effectors. Curr Opin Pharmacol. 57:28–40. doi:10.1016/j.coph.2020.10.006
  • Yoo SH, Mohawk JA, Siepka SM, Shan Y, Huh SK, Hong HK, Kornblum I, Kumar V, Koike N, Xu M, et al. 2013. Competing E3 ubiquitin ligases govern circadian periodicity by degradation of CRY in nucleus and cytoplasm. Cell. 152:1091–1105. doi:10.1016/j.cell.2013.01.055
  • Zhang L, Zhang R, Tien CL, Chan RE, Sugi K, Fu C, Griffin AC, Shen Y, Burris TP, Liao X, et al. 2017. REV-ERBalpha ameliorates heart failure through transcription repression. JCI Insight. 2. doi:10.1172/jci.insight.95177
  • Zhang R, Lahens NF, Ballance HI, Hughes ME, Hogenesch JB. 2014. A circadian gene expression atlas in mammals: implications for biology and medicine. Proc Natl Acad Sci U S A. 111:16219–16224. doi:10.1073/pnas.1408886111
  • Zhang R, Yang J, Zhu J, Xu X. 2009. Depletion of zebrafish Tcap leads to muscular dystrophy via disrupting sarcomere-membrane interaction, not sarcomere assembly. Hum Mol Genet. 18:4130–4140. doi:10.1093/hmg/ddp362

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.