94
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Association between the Extent of Peripheral Blood DNA Methylation of HIF3A and Accumulation of Adiposity in community-dwelling Women: The Yakumo Study

, , , , , ORCID Icon, ORCID Icon, , , , , , , , , & ORCID Icon show all
Pages 130-137 | Received 18 Sep 2021, Accepted 02 Sep 2022, Published online: 14 Sep 2022

References

  • Blüher M. Adipose tissue dysfunction in obesity. Exp Clin Endocrinol Diabetes. 2009;117:241–250. doi:10.1055/s-0029-1192044. PMID:19358089.
  • Bastien M, Poirier P, Lemieux I, Després JP. Overview of epidemiology and contribution of obesity to cardiovascular disease. Prog Cardiovasc Dis. 2014;56:369–381. doi:10.1016/j.pcad.2013.10.016. PMID:24438728.
  • Kahn SE, Hull RL, Utzschneider KM. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature. 2006;444:840–846. doi:10.1038/nature05482. PMID:17167471.
  • Blüher M. Obesity: global epidemiology and pathogenesis. Nat Rev Endocrinol. 2019;15:288–298. doi:10.1038/s41574-019-0176-8. PMID:30814686.
  • Hruby A, Manson JE, Qi L, et al. Determinants and consequences of obesity. Am J Public Health. 2016;106:1656–1662. doi:10.2105/AJPH.2016.303326. PMID:27459460.
  • Temelkova-Kurktschiev T, Stefanov T. Lifestyle and genetics in obesity and type 2 diabetes. Exp Clin Endocrinol Diabetes. 2012;120:1–6. doi:10.1055/s-0031-1285832. PMID:21915815.
  • Ibrahim MM. Subcutaneous and visceral adipose tissue: structural and functional differences. Obes Rev. 2010;11:11–18. doi:10.1111/j.1467-789X.2009.00623.x. PMID:19656312.
  • Bruun JM, Lihn AS, Pedersen SB, Richelsen B. Monocyte chemoattractant protein-1 release is higher in visceral than subcutaneous human adipose tissue (AT): implication of macrophages resident in the AT. J Clin Endocrinol Metab. 2005;90:2282–2289. doi:10.1210/jc.2004-1696. PMID:15671098.
  • Curat CA, Wegner V, Sengenès C, et al. Macrophages in human visceral adipose tissue: increased accumulation in obesity and a source of resistin and visfatin. Diabetologia. 2006;49:744–747. doi:10.1007/s00125-006-0173-z. PMID:16496121.
  • Fox CS, Massaro JM, Hoffmann U, et al. Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham heart study. Circulation. 2007;116:39–48. doi:10.1161/CIRCULATIONAHA.106.675355. PMID:17576866.
  • Santilli F, Simeone PG, Guagnano MT, et al. Effects of liraglutide on weight loss, fat distribution, and β-cell function in obese subjects with prediabetes or early type 2 diabetes. Diabetes Care. 2017;40:1556–1564. doi:10.2337/dc17-0589. PMID:28912305.
  • Munetsuna E, Yamada H, Ando Y, et al. Association of subcutaneous and visceral fat with circulating microRNAs in a middle-aged Japanese population. Ann Clin Biochem. 2018;55:437–445. doi:10.1177/0004563217735124. PMID:28920467.
  • Yamada H, Ohashi K, Suzuki K, et al. Longitudinal study of circulating miR-122 in a rat model of non-alcoholic fatty liver disease. Clin Chim Acta. 2015;446:267–271. doi:10.1016/j.cca.2015.05.002. PMID:25958847.
  • Hiratsuka I, Yamada H, Munetsuna E, Hashimoto S, Itoh M. Circulating MicroRNAs in graves’ disease in relation to clinical activity. Thyroid. 2016;26:1431–1440. doi:10.1089/thy.2016.0062. PMID:27610819.
  • van Dijk Sj, Molloy PL, Varinli H, et al. Epigenetics and human obesity. Int J Obes (Lond). 2015;39:85–97. doi:10.1038/ijo.2014.34. PMID:24566855.
  • van Dijk SJ, Tellam RL, Morrison JL, Muhlhausler BS, Molloy PL. Recent developments on the role of epigenetics in obesity and metabolic disease. Clin Epigenetics. 2015;7:66. doi:10.1186/s13148-015-0101-5. PMID:27408648.
  • Moore LD, Le T, Fan G. DNA methylation and its basic function. Neuropsychopharmacology. 2013;38:23–38. doi:10.1038/npp.2012.112. PMID:22781841.
  • Lim U, Song MA. Dietary and lifestyle factors of DNA methylation. Methods Mol Biol. 2012;863:359–376. doi:10.1007/978-1-61779-612-8_23. PMID:22359306.
  • Ohashi K, Munetsuna E, Yamada H, et al. High fructose consumption induces DNA methylation at PPARα and CPT1A promoter regions in the rat liver. Biochem Biophys Res Commun. 2015;468:185–189. doi:10.1016/j.bbrc.2015.10.134. PMID:26519879.
  • Munetsuna E, Yamada H, Yamazaki M, et al. Maternal high-fructose intake increases circulating corticosterone levels via decreased adrenal corticosterone clearance in adult offspring. J Nutr Biochem. 2019;67:44–50. doi:10.1016/j.jnutbio.2019.01.016. PMID:30856463.
  • Mizuno G, Munetsuna E, Yamada H, et al. Maternal fructose consumption downregulates hippocampal catalase expression via DNA methylation in rat offspring. Nutr Res. 2021;92:40–48. doi:10.1016/j.nutres.2021.06.002. PMID:34274553.
  • Yamazaki M, Munetsuna E, Yamada H, et al. Fructose consumption induces hypomethylation of hepatic mitochondrial DNA in rats. Life Sci. 2016;149:146–152. doi:10.1016/j.lfs.2016.02.020. PMID:26869391.
  • Fujii R, Yamada H, Munetsuna E, et al. Associations between dietary vitamin intake, ABCA1 gene promoter DNA methylation, and lipid profiles in a Japanese population. Am J Clin Nutr. 2019;110:1213–1219. doi:10.1093/ajcn/nqz181. PMID:31504085.
  • Fujii R, Yamada H, Munetsuna E, et al. Dietary vegetable intake is inversely associated with ATP-binding cassette protein A1 (ABCA1) DNA methylation levels among Japanese women. Nutrition. 2019;65:1–5. doi:10.1016/j.nut.2019.02.010. PMID:31029915.
  • Gao X, Zhang Y, Breitling LP, Brenner H. Tobacco smoking and methylation of genes related to lung cancer development. Oncotarget. 2016;7:59017–59028. doi:10.18632/oncotarget.10007. PMID:27323854.
  • Tsuboi Y, Yamada H, Munetsuna E, et al. Relationship between long interspersed nuclear element-1 DNA methylation in leukocytes and dyslipidemia in the Japanese general population. J Atheroscler Thromb. 2018;25:1231–1239. doi:10.5551/jat.43570. PMID:29628482.
  • Dick KJ, Nelson CP, Tsaprouni L, et al. DNA methylation and body-mass index: a genome-wide analysis. Lancet. 2014;383:1990–1998. doi:10.1016/S0140-6736(13)62674-4. PMID:24630777.
  • Main AM, Gillberg L, Jacobsen AL, et al. DNA methylation and gene expression of HIF3A: cross-tissue validation and associations with BMI and insulin resistance. Clin Epigenetics. 2016;8:89. doi:10.1186/s13148-016-0258-6. PMID:27594926.
  • Wang S, Song J, Yang Y, Zhang Y, Wang H, Ma J. HIF3A DNA methylation is associated with childhood obesity and ALT. PLoS One. 2015;10:e0145944. doi:10.1371/journal.pone.0145944. PMID:26717317.
  • Duan C. Hypoxia-inducible factor 3 biology: complexities and emerging themes. Am J Physiol Cell Physiol. 2016;310:C260–9. doi:10.1152/ajpcell.00315.2015. PMID:26561641.
  • Ravenna L, Salvatori L, Russo MA. HIF3α: the little we know. FEBS J. 2016;283:993–1003. doi:10.1111/febs.13572. PMID:26507580.
  • Pfeiffer S, Krüger J, Maierhofer A, et al. Hypoxia-inducible factor 3A gene expression and methylation in adipose tissue is related to adipose tissue dysfunction. Sci Rep. 2016;6:27969. doi:10.1038/srep27969. PMID:27346320.
  • Zhang Y, Chen Y, Qu H, Wang Y. Methylation of HIF3A promoter CpG islands contributes to insulin resistance in gestational diabetes mellitus. Mol Genet Genomic Med. 2019;7:e00583. doi:10.1002/mgg3.583. PMID:30743315.
  • Maeda K, Yamada H, Munetsuna E, et al. Association of smoking habits with TXNIP DNA methylation levels in leukocytes among general Japanese population. PLoS One. 2020;15:e0235486. doi:10.1371/journal.pone.0235486. PMID:32609762.
  • Watanabe T, Tsujino I, Konno S, et al. Association between smoking status and obesity in a nationwide survey of Japanese adults. PLoS One. 2016;11:e0148926. doi:10.1371/journal.pone.0148926. PMID:27007232.
  • Ando Y, Yamazaki M, Yamada H, et al. Association of circulating miR-20a, miR-27a, and miR-126 with non-alcoholic fatty liver disease in general population. Sci Rep. 2019;9:18856. doi:10.1038/s41598-019-55076-z. PMID:31827150.
  • Yamada H, Suzuki K, Ichino N, et al. Associations between circulating microRNAs (miR-21, miR-34a, miR-122 and miR-451) and non-alcoholic fatty liver. Clin Chim Acta. 2013;424:99–103. doi:10.1016/j.cca.2013.05.021. PMID:23727030.
  • Yamada H, Suzuki K, Fujii R, et al. Circulating miR-21, miR-29a, and miR-126 are associated with premature death risk due to cancer and cardiovascular disease: the JACC Study. Sci Rep. 2021;11:5298. doi:10.1038/s41598-021-84707-7. PMID:33674633.
  • Kondo M, Yamada H, Munetsuna E, et al. Associations of serum microRNA-20a, −27a, and −103a with cognitive function in a Japanese population: the yakumo study. Arch Gerontol Geriatr. 2019;82:155–160. doi:10.1016/j.archger.2019.01.007. PMID:30802839.
  • Suzuki K, Yamada H, Fujii R, et al. Association between circulating vascular-related microRNAs and an increase in blood pressure: a 5-year longitudinal population-based study. J Hypertens. 2021;39:84–89. doi:10.1097/HJH.0000000000002606. PMID:32740403.
  • Jebb SA, Cole TJ, Doman D, Murgatroyd PR, Prentice AM. Evaluation of the novel Tanita body-fat analyser to measure body composition by comparison with a four-compartment model. Br J Nutr. 2000;83:115–122. doi:10.1017/s0007114500000155. PMID:10743490.
  • Silva CP, Kamens HM. Cigarette smoke-induced alterations in blood: a review of research on DNA methylation and gene expression. Exp Clin Psychopharmacol. 2021;29:116–135. doi:10.1037/pha0000382. PMID:32658533.
  • Botek M, Krejčí J, McKune A. Sex differences in autonomic cardiac control and oxygen saturation response to short-term normobaric hypoxia and following recovery: effect of aerobic fitness. Front Endocrinol (Lausanne). 2018;9:697. doi:10.3389/fendo.2018.00697. PMID:30532736.
  • Canoy D, Wareham N, Luben R, et al. Cigarette smoking and fat distribution in 21,828 British men and women: a population-based study. Obes Res. 2005;13:1466–1475. doi:10.1038/oby.2005.177. PMID:16129730.
  • Facchini FS, Hollenbeck CB, Jeppesen J, Chen YD, Reaven GM. Insulin resistance and cigarette smoking. Lancet. 1992;339:1128–1130. doi:10.1016/0140-6736(92)90730-q. PMID:1349365.
  • Wannamethee SG, Shaper AG, Perry IJ. Smoking as a modifiable risk factor for type 2 diabetes in middle-aged men. Diabetes Care. 2001;24:1590–1595. doi:10.2337/diacare.24.9.1590. PMID:11522704.
  • Hu FB, Manson JE, Stampfer MJ, et al. Diet, lifestyle, and the risk of type 2 diabetes mellitus in women. N Engl J Med. 2001;345:790–797. doi:10.1056/NEJMoa010492. PMID:11556298.
  • Kato A, Li Y, Ota A, et al. Smoking results in accumulation of ectopic fat in the liver. Diabetes Metab Syndr Obes. 2019;12:1075–1080. doi:10.2147/DMSO.S212495. PMID:31372017.
  • Filozof C, Fernández Pinilla MC, Fernández-Cruz A. Smoking cessation and weight gain. Obes Rev. 2004;5:95–103. doi:10.1111/j.1467-789X.2004.00131.x. PMID:15086863.
  • Jin T, Hao J, Fan D. Nicotine induces aberrant hypermethylation of tumor suppressor genes in pancreatic epithelial ductal cells. Biochem Biophys Res Commun. 2018;499:934–940. doi:10.1016/j.bbrc.2018.04.022. PMID:29626481.
  • Hatanaka M, Shimba S, Sakaue M, et al. Hypoxia-inducible factor-3alpha functions as an accelerator of 3T3-L1 adipose differentiation. Biol Pharm Bull. 2009;32:1166–1172. doi:10.1248/bpb.32.1166. PMID:19571379.
  • Huang YT, Chu S, Loucks EB, et al. Epigenome-wide profiling of DNA methylation in paired samples of adipose tissue and blood. Epigenetics. 2016;11:227–236. doi:10.1080/15592294.2016.1146853. PMID:26891033.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.