273
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Semiparametric estimation and inference on the fractal index of Gaussian and conditionally Gaussian time series data

References

  • Aït-Sahalia, Y., Xiu, D. (2019). A Hausman test for the presence of market microstructure noise in high frequency data. Journal of Econometrics 211 (1):176–205. doi:10.1016/j.jeconom.2018.12.013
  • Andersen, T. G., Bollerslev, T., Diebold, F. X., Labys, P. (2000). Great realizations. Risk 13 (3):105–108.
  • Andersen, T. G., Bollerslev, T., Diebold, F. X., Labys, P. (2003). Modeling and forecasting realized volatility. Econometrica 71 (2):579–625. doi:10.1111/1468-0262.00418
  • Asmussen, S., Glynn, P. W. (2007). Stochastic simulation: algorithms and analysis, New York: Springer.
  • Baillie, R. T. (1996). Long memory processes and fractional integration in econometrics. Journal of Econometrics 73 (1):5–59. doi:10.1016/0304-4076(95)01732-1
  • Baillie, R. T., Bollerslev, T., Mikkelsen, H. O. (1996). Fractionally integrated generalized autoregressive conditional heteroskedasticity. Journal of Econometrics 74 (1):3–30. doi:10.1016/S0304-4076(95)01749-6
  • Bajgrowicz, P., Scaillet, O., Treccani, A. (2016). Jumps in high-frequency data: spurious detections, dynamics, and news. Management Science 62 (8):2198–2217. doi:10.1287/mnsc.2015.2234
  • Barndorff-Nielsen, O. E., Benth, F. E., Veraart, A. E. D. (2013). Modelling energy spot prices by volatility modulated Lévy-driven Volterra processes. Bernoulli 19 (3):803–845. doi:10.3150/12-BEJ476
  • Barndorff-Nielsen, O. E., Corcuera, J. M., Podolskij, M. (2009). Power variation for Gaussian processes with stationary increments. Stochastic Processes and their Applications 119 (6):1845–1865. doi:10.1016/j.spa.2008.09.004
  • Barndorff-Nielsen, O. E., Corcuera, J. M., Podolskij, M. (2011). Multipower variation for Brownian semistationary processes. Bernoulli 17 (4):1159–1194. doi:10.3150/10-BEJ316
  • Barndorff-Nielsen, O. E., Pakkanen, M. S., Schmiegel, J. (2014). Assessing relative volatility/intermittency/energy dissipation. Electronic Journal of Statistics 8 (2):1996–2021. doi:10.1214/14-EJS942
  • Barndorff-Nielsen, O. E., Schmiegel, J. (2007). Ambit processes: with applications to turbulence and tumour growth. In: Benth F.E., Di Nunno G., Lindstrøm T., Øksendal B., Zhang T., Stochastic analysis and applications, Volume 2 of Abel Symp., Berlin: Springer, pp. 93–124.
  • Barndorff-Nielsen, O. E., Schmiegel, J. (2009). Brownian semistationary processes and volatility/intermittency. In: H. Albrecher, W. Rungaldier and W. Schachermeyer. Advanced financial modelling, volume 8 of radon series on computational and applied mathematics, Berlin: Walter de Gruyter, pp. 1–25.
  • Barndorff-Nielsen, O. E., Shephard, N. (2004). Power and bipower variation with stochastic volatility and jumps. Journal of Financial Econometrics 1 (2):1–48. doi:10.1093/jjfinec/nbh001
  • Bayer, C., Friz, K., Gatheral, J. (2016). Pricing under rough volatility. Quantitative Finance 16 (6):887–904. doi:10.1080/14697688.2015.1099717
  • Bennedsen, M., Lunde, A., Pakkanen, M. S. (2017a). Decoupling the short- and long-term behavior of stochastic volatility. Working paper. Available at: https://arxiv.org/abs/1610.00332.
  • Bennedsen, M. (2017). A rough multi-factor model of electricity spot prices. Energy Economics 63:301–313. doi:10.1016/j.eneco.2017.02.007
  • Bennedsen, M., Hounyo, U., Lunde, A., Pakkanen, M. S. (2019). The local fractional bootstrap. Scandinavian Journal of Statistics 46 (1):329–359. doi:10.1111/sjos.12355
  • Bennedsen, M., Lunde, A., Pakkanen, M. S. (2017b). Hybrid scheme for Brownian semistationary processes. Finance and Stochastics 21(4):931–965. doi:10.1007/s00780-017-0335-5
  • Beran, J. (1994). Statistics for long-memory processes, Chapman and Hall/CRC.
  • Bingham, N. H., Goldie, C. M., Teugels, J. L. (1989). Regular variation, Cambridge: Cambridge University Press.
  • Bollerslev, T., Wright, J. H. (2000). Semiparametric estimation of long-memory volatility dependencies: the role of high-frequency data. Journal of Econometrics 98 (1):81–106. doi:10.1016/S0304-4076(99)00079-2
  • Breuer, P., Major, P. (1983). Central limit theorems for nonlinear functionals of Gaussian fields. Journal of Multivariate Analysis 13 (3):425–441. doi:10.1016/0047-259X(83)90019-2
  • Chan, G., Wood, A. T. A. (2000). Increment-based estimators of fractal dimension for two-dimensional surface data. Statistica Sinica 10:343–376.
  • Christensen, K., Oomen, R. C. A., Podolskij, M. (2014). Fact or friction: jumps at ultra high frequency. Journal of Financial Economics 114 (3):576–599. doi:10.1016/j.jfineco.2014.07.007
  • Coeurjolly, J. (2001). Estimating the parameters of a fractional Brownian motion by discrete variations of its sample paths. Statistical Inference for Stochastic Processes 4(2):199–227.
  • Coeurjolly, J. (2008). Hurst exponent estimation of locally self-similar Gaussian processes using sample quantiles. The Annals of Statistics 36 (3):1404–1434. doi:10.1214/009053607000000587
  • Comte, F., Coutin, L., Renault, E. (2012). Affine fractional stochastic volatility models. Annals of Finance 8 (2-3):337–378. doi:10.1007/s10436-010-0165-3
  • Comte, F., Renault, E. (1996). Long memory continuous time models. Journal of Econometrics 73 (1):101–149. doi:10.1016/0304-4076(95)01735-6
  • Comte, F., Renault, E. (1998). Long memory in continuous-time stochastic volatility models. Mathematical Finance 8 (4):291–323. doi:10.1111/1467-9965.00057
  • Constantine, A. G., Hall, P. (1994). Characterizing surface smoothness via estimation of effective fractal dimension. Journal of the Royal Statistical Society: Series B (Methodological) 56 (1):97–113. doi:10.1111/j.2517-6161.1994.tb01963.x
  • Corcuera, J. M., Hedevang, E., Pakkanen, M. S., Podolskij, M. (2013). Asymptotic theory for Brownian semistationary processes with application to turbulence. Stochastic Processes and their Applications 123 (7):2552–2574. doi:10.1016/j.spa.2013.03.011
  • Davies, S., Hall, P. (1999). Fractal analysis of surface roughness by using spatial data. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 61(1):3–37. doi:10.1111/1467-9868.00160
  • Delbaen, F., Schachermayer, W. (1994). A general version of the fundamental theorem of asset pricing. Mathematische Annalen 300(1):463–520. doi:10.1007/BF01450498
  • Dhruva, B. R. (2000). An experimental study of high Reynolds number turbulence in the atmosphere. Ph.D. thesis. New Haven: Yale University.
  • Falconer, K. (1990). Fractal geometry: mathematical foundations and applications. Chichester: Wiley.
  • Gatheral, J., Jaisson, T., Rosenbaum, M. (2018). Volatility is rough. Quantitative Finance 18 (6):933–949. doi:10.1080/14697688.2017.1393551
  • Geweke, J., Porter-Hudak, S. (1983). The estimation and application of long memory time series models. Journal of Time Series Analysis 4 (4):221–238. doi:10.1111/j.1467-9892.1983.tb00371.x
  • Gneiting, T., Schlather, M. (2004). Stochastic models that separate fractal dimension and the Hurst effect. SIAM Review 46 (2):269–282. doi:10.1137/S0036144501394387
  • Gneiting, T., Sevcikova, H., Percival, D. B. (2012). Estimators of fractal dimension: assessing the roughness of time series and spatial data. Statistical Science 27 (2):247–277. doi:10.1214/11-STS370
  • Granger, C. W. J., Joyeux, R. (1980). An introduction to long-memory time series models and fractional differencing. Journal of Time Series AnalysisAnalysis1(1):15–29.
  • Hall, P., Härdle, W., Kleinow, T., Schmidt, P. (2000). Semiparametric bootstrap approach to hypothesis tests and confidence intervals for the Hurst coefficient. Statistical Inference for Stochastic Processes 3(3):263–276. doi:10.1023/A:1009921413616
  • Hansen, P. R., Lunde, A. (2006). Realized variance and market microstructure noise. Journal of Business & Economic Statistics 24 (2):127–161. doi:10.1198/073500106000000071
  • Hosking, J. R. M. (1981). Fractional differencing. Biometrika 68(1):165–176. doi:10.1093/biomet/68.1.165
  • Istas, J., Lang, G. (1997). Quadratic variations and estimation of the local Hölder index of a Gaussian process. Annales de L'institut Henri Poincare (B) Probability and Statistics 33 (4):407–436. doi:10.1016/S0246-0203(97)80099-4
  • Jacquier, A., Martini, C., Muguruza, A. (2018). On VIX futures in the rough Bergomi model. Quantitative Finance 18 (1):45–61. doi:10.1080/14697688.2017.1353127
  • Kokoszka, S., Taqqu, M. (1996). Infinite variance stable moving averages with long memory. Journal of Econometrics 73 (1):79–99. doi:10.1016/0304-4076(95)01734-8
  • Kolmogorov, A. N. (1941a). Dissipation of energy in locally isotropic turbulence. Doklady Akademii Nauk SSSR 32:19–21.
  • Kolmogorov, A. N. (1941b). The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Doklady Akademii Nauk SSSR 30:299–303.
  • Liu, G., Jing, B. (2018). On estimation of Hurst parameter under noisy observations. Journal of Business & Economic Statistics 36 (3):483–492. doi:10.1080/07350015.2016.1191503
  • Liu, L. Y., Patton, A. J., Sheppard, K. (2015). Does anything beat 5-minute RV? A comparison of realized measures across multiple asset classes. Journal of Econometrics 187 (1):293–311. doi:10.1016/j.jeconom.2015.02.008
  • Mandelbrot, B. B., Van Ness, J. W. (1968). Fractional Brownian motions, fractional noises and applications. SIAM Review 10(4):422–437. doi:10.1137/1010093
  • O’Hara, M. (1995). Market microstructure theory, Oxford: Blackwell.
  • Rényi, A. (1963). On stable sequences of events. Sankhya Series A 25:293–302.
  • Rogers, L. C. G. (1997). Arbitrage with fractional Brownian motion. Mathematical Finance 7(1):95–105. doi:10.1111/1467-9965.00025
  • Sottinen, T., Valkeila, E. (2003). On arbitrage and replication in the fractional Black-Scholes pricing model. Statistics & Decisions (21):137–151. doi:10.1524/stnd.21.2.93.19003
  • Sun, E. W., Chen, Y.-T., Yu, M.-T. (2015). Generalized optimal wavelet decomposing algorithm for big financial data. International Journal of Production Economics 165:194–214. doi:10.1016/j.ijpe.2014.12.033
  • Sun, E. W., Meinl, T. (2012). A new wavelet-based denoising algorithm for high-frequency financial data mining. European Journal of Operational Research 3:589–599. doi:10.1016/j.ejor.2011.09.049
  • Sun, W., Rachev, S., Fabozzi, F. (2007). Fractals or I.I.D.: evidence of long-range dependence and heavy tailedness from modeling German equity market returns. Journal of Economics and Business 59 (6):575–595. doi:10.1016/j.jeconbus.2007.02.001
  • Sun, W., Rachev, S., Fabozzi, F. (2009). A new approach of using Lévy processes for determining high-frequency value at risk predictions. European Financial Management 15 (2):340–361. doi:10.1111/j.1468-036X.2008.00467.x
  • Tanaka, K. (2017). ARFIMA models and the fractional Brownian motion. In: David J. Balding, Noel A. C. Cressie, Garrett M. Fitzmaurice, Geof H. Givens, Harvey Goldstein, Geert Molenberghs, David W. Scott, Adrian F. M. Smith, Ruey S. Tsay. Time series analysis: nonstationary and noninvertible distribution theory. 2nd ed. Wiley Series in Probability and Statistics, Hoboken, NJ: Wiley.
  • Zhang, L., Mykland, P. A., Aït-Sahalia, Y. (2005). A tale of two time scales: determining integrated volatility with noisy high-frequency data. Journal of the American Statistical Association 100(472):1394–1411. doi:10.1198/016214505000000169

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.