4,819
Views
4
CrossRef citations to date
0
Altmetric
Public Health

The role of vitamin D deficiency in the development of paediatric diseases

, , , , &
Pages 127-135 | Received 29 Aug 2022, Accepted 28 Nov 2022, Published online: 10 Dec 2022

References

  • Cardwell G, Bornman JF, James AP, et al. A review of mushrooms as a potential source of dietary vitamin D. Nutrients. 2018;10(10)):1498.
  • Dusso AS, Brown AJ, Slatopolsky E. Vitamin D. Am J Physiol Renal Physiol. 2005;289(1):F8–28.
  • Thacher TD, Levine MA. CYP2R1 mutations causing vitamin D-deficiency rickets. J Steroid Biochem Mol Biol. 2017;173:333–336.
  • Taskapan H, Wei M, Oreopoulos DG. 25(OH) vitamin D3 in patients with chronic kidney disease and those on dialysis: rediscovering its importance. Int Urol Nephrol. 2006;38(2):323–329.
  • Christakos S, Dhawan P, Verstuyf A, et al. Vitamin D: metabolism, molecular mechanism of action, and pleiotropic effects. Physiol Rev. 2016;96(1):365–408.
  • (a) Eyles DW, Smith S, Kinobe R, et al. Distribution of the vitamin D receptor and 1 alpha-hydroxylase in human brain. J Chem Neuroanat. 2005;29(1):21–30; (b) Latic N, Erben RG, Vitamin D. Vitamin D and cardiovascular disease, with emphasis on hypertension, atherosclerosis, and heart failure. Int J Mol Sci. 2020;21(18):6483.
  • Lang F, Ma K, Leibrock CB. 1,25(OH)(2)D(3) in brain function and neuropsychiatric disease. Neurosignals. 2019;27(1):40–49.
  • Lin CI, Chang YC, Kao NJ, et al. 1,25(OH)(2)D(3) alleviates Aβ(25-35)-induced tau hyperphosphorylation, excessive reactive oxygen species, and apoptosis through interplay with glial cell line-derived neurotrophic factor signaling in SH-SY5Y cells. IJMS. 2020;21(12):4215.
  • Charoenngam N, Shirvani A, Kalajian TA, et al. The effect of various doses of oral vitamin D(3) supplementation on gut microbiota in healthy adults: a randomized, double-blinded, dose-response study. Anticancer Res. 2020;40(1):551–556.
  • Grant WB, Moukayed M. Vitamin D(3) from ultraviolet-B exposure or oral intake in relation to cancer incidence and mortality. Curr Nutr Rep. 2019;8(3):203–211.
  • Mokhtari-Zaer A, Hosseini M, Salmani H, et al. Vitamin D(3) attenuates lipopolysaccharide-induced cognitive impairment in rats by inhibiting inflammation and oxidative stress. Life Sci. 2020;253:117703.
  • Tripkovic L, Lambert H, Hart K, et al. Comparison of vitamin D2 and vitamin D3 supplementation in raising serum 25-hydroxyvitamin D status: a systematic review and meta-analysis. Am J Clin Nutr. 2012;95(6):1357–1364.
  • Samad N, Imran A, Bhatti SA, et al. Vitamin D2 protects acute and repeated noise stress induced behavioral, biochemical, and histopathological alterations: possible antioxidant effect. Saudi J Biol Sci. 2022;29(1):601–609.
  • Balachandar R, Pullakhandam R, Kulkarni B, et al. Relative efficacy of vitamin D(2) and vitamin D(3) in improving vitamin D status: systematic review and meta-analysis. Nutrients. 2021;13(10):3328.
  • (a) Ross AC, Taylor CL, Yaktine AL, Del Valle HB, editors. Institute of Medicine Committee to review dietary reference intakes for vitamin, D.; calcium, the national academies collection: reports funded by National Institutes of Health. Dietary reference intakes for calcium and vitamin D. Washington (DC): National Academies Press (US); 2011. (b) Martineau AR, Jolliffe DA, Hooper RL, et al. Supplementation to prevent acute respiratory tract infections: systematic review and meta-analysis of individual participant data. BMJ. 2017;356:i6583. (c) Munns CF, Shaw N, Kiely M, et al. Global consensus recommendations on prevention and management of nutritional rickets. J Clin Endocrinol Metab. 2016;101(2):394–415.
  • (a) Holick MF, Binkley NC, Bischoff-Ferrari HA, Endocrine Society, et al. Evaluation, treatment, and prevention of vitamin D deficiency: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2011;96(7):1911–1930; (b) Amrein K, Scherkl M, Hoffmann M, et al. Vitamin D deficiency 2.0: an update on the current status worldwide. Eur J Clin Nutr. 2020;74(11):1498–1513.
  • Wu Y, Yang Y, Xiao X, et al. The pattern of vitamin D levels in children 0-4 years of age in Yunnan province. Trop Pediatr. 2021;67(5):fmab093.
  • Sooriyaarachchi P, Jeyakumar DT, King N, et al. Impact of vitamin D deficiency on COVID-19. Clin Nutr ESPEN. 2021;44:372–378.
  • Marzban M, Kalantarhormozi M, Mahmudpour M, et al. Prevalence of vitamin D deficiency and its associated risk factors among rural population of the Northern part of the Persian Gulf. BMC Endocr Disord. 2021;21(1):219.
  • Islam MZ, Bhuiyan NH, Akhtaruzzaman M, et al. Vitamin D deficiency in Bangladesh: a review of prevalence, causes and recommendations for mitigation. Asia Pac J Clin Nutr. 2022;31(2):167–180.
  • (a) Vijayakumar M, Bk A, George B, et al. Vitamin D status in children on anticonvulsant therapy. Indian J Pediatr. 2022;89(6):541–545. (b) LoPinto-Khoury C, Brennan L, Mintzer S. Impact of carbamazepine on vitamin D levels: a meta-analysis. Epilepsy Res. 2021;178:106829.
  • Cardo A, Churruca I, Lasa A, et al. Nutritional imbalances in adult celiac patients following a Gluten-Free diet. Nutrients. 2021;13(8):2877.
  • Sizar O, Khare S, Goyal A, et al. Vitamin D deficiency. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022.
  • Alawadhi F, Yavuz L. Signs and symptoms of vitamin D deficiency in children: a cross-sectional study in a tertiary pediatric hospital in the United Arab Emirates. Cureus. 2021;13(10):e18998.
  • Saad K, Abdelmoghny A, Aboul-Khair MD, et al. Vitamin D status in Egyptian children with allergic rhinitis. Ear Nose Throat J. 2020;99(8):508–512.
  • El Amrousy D, El Ashry H, Hodeib H, et al. Vitamin D in children with inflammatory bowel disease: a randomized controlled clinical trial. J Clin Gastroenterol. 2021;55(9):815–820.
  • Sahni SS, Kakkar S, Kumar R, et al. Osteomalacic myopathy in children and adolescents with vitamin-D deficiency. Neurol India. 2021;69(6):1650–1654.
  • Lord C, Elsabbagh M, Baird G, et al. Autism spectrum disorder. Lancet. 2018;392(10146):508–520.
  • Wang Z, Ding R, Wang J. The association between vitamin D status and autism spectrum disorder (ASD): a systematic review and meta-analysis. Nutrients. 2020;13(1):86.
  • Lai MC, Kassee C, Besney R, et al. Prevalence of co-occurring mental health diagnoses in the autism population: a systematic review and meta-analysis. Lancet Psychiatry. 2019;6(10):819–829.
  • Trifonova EA, Klimenko AI, Mustafin ZS, et al. The mTOR signaling pathway activity and vitamin D availability control the expression of most autism predisposition genes. Int J Mol Sci. 2019;20(24):6332.
  • Petruzzelli MG, Marzulli L, Margari F, et al. Vitamin D deficiency in autism spectrum disorder: a cross-sectional study. Dis Markers. 2020;2020:9292560.
  • Mazahery H, Conlon CA, Beck KL, et al. A randomised controlled trial of vitamin D and omega-3 long chain polyunsaturated fatty acids in the treatment of irritability and hyperactivity among children with autism spectrum disorder. J Steroid Biochem Mol Biol. 2019;187:9–16.
  • (a) Javadfar Z, Abdollahzad H, Moludi J, et al. Effects of vitamin D supplementation on core symptoms, serum serotonin, and interleukin-6 in children with autism spectrum disorders: a randomized clinical trial. Nutrition. 2020;79-80:110986. (b) Saad K, Abdel-Rahman AA, Elserogy YM, et al. Vitamin D status in autism spectrum disorders and the efficacy of vitamin D supplementation in autistic children. Nutr Neurosci. 2016;19(8):346–351.
  • (a) Kerley CP, Power C, Gallagher L, et al. Lack of effect of vitamin D(3) supplementation in autism: a 20-week, placebo-controlled RCT. Arch Dis Child. 2017;102(11):1030–1036. (b) Principi N, Esposito S. Vitamin D deficiency during pregnancy and autism spectrum disorders development. Front Psychiatry. 2019;10:987.
  • Li B, Xu Y, Zhang X, et al. The effect of vitamin D supplementation in treatment of children with autism spectrum disorder: a systematic review and meta-analysis of randomized controlled trials. Nutr Neurosci. 2022;25(4):835–845.
  • Kittana M, Ahmadani A, Stojanovska L, et al. The role of vitamin D supplementation in children with autism spectrum disorder: a narrative review. Nutrients. 2021;14(1):26.
  • Wang B, Dong H, Li H, et al. A probable way vitamin D affects autism spectrum disorder: the nitric oxide signaling pathway. Front Psychiatry. 2022;13:908895.
  • Bivona G, Gambino CM, Iacolino G, et al. Vitamin D and the nervous system. Neurol Res. 2019;41(9):827–835.
  • Harms LR, Cowin G, Eyles DW, et al. Neuroanatomy and psychomimetic-induced locomotion in C57BL/6J and 129/X1SvJ mice exposed to developmental vitamin D deficiency. Behav Brain Res. 2012;230(1):125–131.
  • (a) Cui X, Pelekanos M, Burne TH, et al. Maternal vitamin D deficiency alters the expression of genes involved in dopamine specification in the developing rat mesencephalon. Neurosci Lett. 2010;486(3):220–223. (b) Luan W, Hammond LA, Cotter E, et al. Developmental vitamin D (DVD) deficiency reduces Nurr1 and TH expression in post-mitotic dopamine neurons in rat mesencephalon. Mol Neurobiol. 2018;55(3):2443–2453.
  • Mpoulimari I, Zintzaras E. Synthesis of genetic association studies on autism spectrum disorders using a genetic model-free approach. Psychiatr Genet. 2022;32(3):91–104.
  • Licari MK, Alvares GA, Varcin K, et al. Prevalence of motor difficulties in autism spectrum disorder: analysis of a population-based cohort. Autism Res. 2020;13(2):298–306.
  • Brandenburg C, Soghomonian JJ, Zhang K, et al. Increased dopamine type 2 gene expression in the dorsal striatum in individuals with autism spectrum disorder suggests alterations in indirect pathway signaling and circuitry. Front Cell Neurosci. 2020;14:577858.
  • Saito N, Sasaoka T. [Dopamine and NMDA receptors in basal ganglia circuits and their roles regarding motor control and learning]. Brain Nerve. 2020;72(11):1135–1142.
  • Filali S, Bergamelli C, Lamine Tall M, et al. Formulation, stability testing, and analytical characterization of melatonin-based preparation for clinical trial. J Pharm Anal. 2017;7(4):237–243.
  • Petruzzelli MG, Matera E, Giambersio D, et al. Subjective and electroencephalographic sleep parameters in children and adolescents with autism spectrum disorder: a systematic review. J Clin Med. 2021;10(17):3893.
  • Malow BA, Findling RL, Schroder CM, et al. Sleep, growth, and puberty after 2 years of Prolonged-Release melatonin in children with autism spectrum disorder. J Am Acad Child Adolesc Psychiatry. 2021;60(2):252–261.e3.
  • Huiberts LM, Smolders K. Effects of vitamin D on mood and sleep in the healthy population: interpretations from the serotonergic pathway. Sleep Med Rev. 2021;55:101379.
  • Jones KS, Redmond J, Fulford AJ, et al. Diurnal rhythms of vitamin D binding protein and total and free vitamin D metabolites. J Steroid Biochem Mol Biol. 2017;172:130–135.
  • Hales CM, Carroll MD, Fryar CD, et al. Prevalence of obesity among adults and youth: United States, 2015-2016. NCHS Data Brief. 2017;(288):1–8.
  • (a) Valaiyapathi B, Gower B, Ashraf AP. Pathophysiology of type 2 diabetes in children and adolescents. Curr Diabetes Rev. 2020;16(3):220–229; (b) Deal BJ, Huffman MD, Binns H, et al. Perspective: childhood obesity requires new strategies for prevention. Adv Nutr. 2020;11(5):1071–1078; (c) Dhaliwal KK, Orsso CE, Richard C, et al. Risk factors for unhealthy weight gain and obesity among children with autism spectrum disorder. Int J Mol Sci. 2019;20(13):3285.
  • Fiamenghi VI, Mello ED. Vitamin D deficiency in children and adolescents with obesity: a meta-analysis. J Pediatr. 2021;97(3):273–279.
  • Pérez-Bravo F, Duarte L, Arredondo-Olguín M, et al. Vitamin D status and obesity in children from Chile. Eur J Clin Nutr. 2022;76(6):899–901.
  • Soheilipour F, Hamidabad NM. Vitamin D and calcium status among adolescents with morbid obesity undergoing bariatric surgery. Obes Surg. 2022;32(3):738–741.
  • Akter R, Afrose A, Sharmin S, et al. A comprehensive look into the association of vitamin D levels and vitamin D receptor gene polymorphism with obesity in children. Biomed Pharmacother. 2022;153:113285.
  • (a) Wang D, Su K, Ding Z, et al. Association of vitamin D receptor gene polymorphisms with metabolic syndrome in Chinese children. Int J Gen Med. 2021;14:57–66. (b) Tangjittipokin W, Umjai P, Khemaprasit K, et al. Vitamin D pathway gene polymorphisms, vitamin D level, and cytokines in children with type 1 diabetes. Gene. 2021;791:145691.
  • Elkhwanky MS, Kummu O, Piltonen TT, et al. Obesity represses CYP2R1, the vitamin D 25-hydroxylase, in the liver and extrahepatic tissues. JBMR Plus. 2020;4(11):e10397.
  • Alves AGP, Cruvinel B, Schincaglia AC, et al. Vitamin D supplementation reduces serum lipids of children with hypertriacylglycerolemia: a randomized, triple-masked, placebo-controlled crossover trial. Nutrition. 2021;89:111296.
  • De Cosmi V, Mazzocchi A, D'Oria V, et al. Effect of vitamin D and docosahexaenoic acid co-supplementation on vitamin D status, body composition, and metabolic markers in obese children: a randomized, double blind, controlled study. Nutrients. 2022;14(7):1397.
  • Mims JW. Asthma: definitions and pathophysiology. Int Forum Allergy Rhinol. 2015;5(Suppl 1):S2–S6.
  • Bontinck A, Maes T, Joos G. Asthma and air pollution: recent insights in pathogenesis and clinical implications. Curr Opin Pulm Med. 2020;26(1):10–19.
  • (a) Haktanir Abul M, Phipatanakul W. Severe asthma in children: evaluation and management. Allergol Int. 2019;68(2):150–157. (b) Ramsahai JM, Hansbro PM, Wark PAB. Mechanisms and management of asthma exacerbations. Am J Respir Crit Care Med. 2019;199(4):423–432.
  • Ma JG, Wu GJ, Xiao HL, et al. Vitamin D has an effect on airway inflammation and Th17/treg balance in asthmatic mice. Kaohsiung J Med Sci. 2021;37(12):1113–1121.
  • Ahmad S, Arora S, Khan S, et al. Vitamin D and its therapeutic relevance in pulmonary diseases. J Nutr Biochem. 2021;90:108571.
  • Wang Q, Ying Q, Zhu W, et al. Vitamin D and asthma occurrence in children: a systematic review and meta-analysis. J Pediatr Nurs. 2022;62:e60–e68.
  • Al-Zayadneh E, Alnawaiseh NA, Ajarmeh S, et al. Vitamin D deficiency in children with bronchial asthma in Southern Jordan: a cross-sectional study. J Int Med Res. 2020;48(12):300060520974242.
  • Aziz DA, Abbas A, Viquar W, et al. Association of vitamin D levels and asthma exacerbations in children and adolescents: experience from a tertiary care center. Monaldi Arch Chest Dis. 2022.[published online ahead of print, 2022 May 24]. doi:10.4081/monaldi.2022.2230
  • Fergeson JE, Patel SS, Lockey RF. Acute asthma, prognosis, and treatment. J Allergy Clin Immunol. 2017;139(2):438–447.
  • Rozmus D, Ciesielska A, Płomiński J, et al. Vitamin D binding protein (VDBP) and its gene polymorphisms-the risk of malignant tumors and other diseases. Int J Mol Sci. 2020;21(21):7822.
  • (a) Ruan Z, Shi Z, Zhang G, et al. Asthma susceptible genes in children: a meta-analysis. Medicine. 2020;99(45): e23051; (b) Zhou Y, Li S. Meta-analysis of vitamin D receptor gene polymorphisms in childhood asthma. Front Pediatr. 2022;10:843691.
  • Ruiz-Ballesteros AI, Meza-Meza MR, Vizmanos-Lamotte B, et al. Association of vitamin D metabolism gene polymorphisms with autoimmunity: evidence in population genetic studies. Int J Mol Sci. 2020;21(24):9626.
  • Thakur C, Kumar J, Kumar P, et al. Vitamin-D supplementation as an adjunct to standard treatment of asthma in children: a randomized controlled trial (ViDASTA trial). Pediatr Pulmonol. 2021;56(6):1427–1433.
  • Forno E, Bacharier LB, Phipatanakul W, et al. Effect of vitamin D3 supplementation on severe asthma exacerbations in children with asthma and low vitamin D levels: the VDKA randomized clinical trial. JAMA. 2020;324(8):752–760.
  • Kumar J, Kumar P, Goyal JP, et al. Vitamin D supplementation in childhood asthma: a systematic review and meta-analysis of randomised controlled trials. ERJ Open Res. 2022;8(1):00662–2021.
  • Uday S, Högler W. Nutritional rickets & osteomalacia: a practical approach to management. Indian J Med Res. 2020;152(4):356–367.
  • Irvine J, Ward LM. Preventing symptomatic vitamin D deficiency and rickets among indigenous infants and children in Canada. Paediatr Child Health. 2022;27(2):127–128.
  • (a) Christakos S, Dhawan P, Porta A, et al. Intestinal calcium absorption. Mol Cell Endocrinol. 2011;347 (1-2):25–29. (b) Christakos S. Vitamin D: a critical regulator of intestinal physiology. JBMR Plus. 2021;5(12):e10554.
  • Fleet JC. Vitamin D-Mediated regulation of intestinal calcium absorption. Nutrients. 2022;14(16):3351.
  • Christakos S, Li S, De La Cruz J, et al. Vitamin D and the intestine: review and update. J Steroid Biochem Mol Biol. 2020;196:105501.
  • Pansu D, Bellaton C, Roche C, et al. Duodenal and ileal calcium absorption in the rat and effects of vitamin D. Am J Physiol. 1983;244(6):G695–700.
  • Shrimanker I, Bhattarai S. Electrolytes. In StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022.
  • Atapattu N, Shaw N, Högler W. Relationship between serum 25-hydroxyvitamin D and parathyroid hormone in the search for a biochemical definition of vitamin D deficiency in children. Pediatr Res. 2013;74(5):552–556.
  • Casselbrant A, Fändriks L, Wallenius V. Glycocholic acid and butyrate synergistically increase vitamin D-induced calcium uptake in caco-2 intestinal epithelial cell monolayers. Bone Rep. 2020;13:100294.
  • Martínez Redondo I, García Romero R, Calmarza P, et al. [Vitamin D insufficiency in a healthy pediatric population. The importance of early prophylaxis]. Nutr Hosp. 2021;38(6):1155–1161.