1,286
Views
0
CrossRef citations to date
0
Altmetric
Sports Medicine & Musculoskeletal Disorders

The effect of shock waves on mineralization and regeneration of distraction zone in osteoporotic rabbits

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1346-1354 | Received 05 Jan 2023, Accepted 14 Mar 2023, Published online: 30 Mar 2023

References

  • NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy Osteoporosis prevention, diagnosis, and therapy. JAMA. 2001;285(6):785–795.
  • Kanis JA. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a who report. WHO study group. Osteoporos Int. 1994;4(6):368–381.
  • Block MS, Christensen BJ. Porous bone ıncreases the risk of posterior mandibular ımplant failure. J Oral Maxillofac Surg. 2021;79(7):1459–1466.
  • Wölfl C, Schuster L, Höner B, et al. Influence of extracorporeal shock wave therapy (ESWT) on bone turnover markers in organisms with normal and low bone mineral density during fracture healing: a randomized clinical trial. GMS Interdiscip Plast Reconstr Surg DGPW. 2017;6:Doc17.
  • Huang HM, Li XL, Tu SQ, et al. Effects of roughly focused extracorporeal shock waves therapy on the expressions of bone morphogenetic protein-2 and osteoprotegerin in osteoporotic fracture in rats. Chin Med J. 2016;129(21):2567–2575.
  • Ye B, Li Y, Zhu S, et al. Effects of ıntermittent low-dose parathyroid hormone treatment on rapid mandibular distraction osteogenesis in rabbits. J Oral Maxillofac Surg. 2017;75(8):1722–1731.
  • Xie MK, Hu CB, Zhou B, et al. Effect of gene transfection timing on TGF-β1 expression in rabbit mandibular distraction gap. Genet Mol Res. 2017;16(2).
  • Simpson AH, Kenwright J. Fracture after distraction osteogenesis. J Bone Joint Surg Br. 2000;82(5):659–665.
  • Simplicio CL, Purita J, Murrell W, et al. Extracorporeal shock wave therapy mechanisms in musculoskeletal regenerative medicine. J Clin Orthop Trauma. 2020;11(Suppl 3):S309–S18.
  • Zhang LE, Weng C, Zhao Z, et al. Extracorporeal shock wave therapy for chronic wounds: a systematic review and meta-analysis of randomized controlled trials. Wound Repair Regen. 2017;25(4):697–706.
  • Sahin B, Emirzeoglu M, Uzun A, et al. Unbiased estimation of the liver volume by the cavalieri principle using magnetic resonance images. Eur J Radiol. 2003;47(2):164–170.
  • Ozkan E, Evmek B, Bereket M. Is the reiteration of extracorporeal shock wave therapy beneficial to enhance the bone integrity in type 1 diabetic rats? Ann Med Res. 2022;29(10):1.
  • Yang TL, Shen H, Liu A, et al. A road map for understanding molecular and genetic determinants of osteoporosis. Nat Rev Endocrinol. 2020;16(2):91–103.
  • Compston JE, McClung MR, Leslie WD. Osteoporosis. Lancet. 2019;393(10169):364–376.
  • Lai JP, Wang FS, Hung CM, et al. Extracorporeal shock wave accelerates consolidation in distraction osteogenesis of the rat mandible. J Trauma. 2010;69(5):1252–1258.
  • Jiang X, Zhang Y, Fan X, et al. The effects of hypoxiainducible factor (HIF)-1α protein on bone regeneration during distraction osteogenesis: an animal study. Int J Oral Maxillofac Surg. 2016;45(2):267.
  • Kobayashi M, Chijimatsu R, Yoshikawa H, et al. Extracorporeal shock wave therapy accelerates endochondral ossification and fracture healing in a rat femur delayed-union model. Biochem Biophys Res Commun. 2020;530(4):632–637.
  • Wang CJ, Wang FS, Yang KD. Biological effects of extracorporeal shockwave in bone healing: a study in rabbits. Arch Orthop Trauma Surg. 2008;128(8):879–884.
  • Onger ME, Bereket C, Sener I, et al. Is it possible to change of the duration of consolidation period in the distraction osteogenesis with the repetition of extracorporeal shock waves? Med Oral Patol Oral Cir Bucal. 2017;22(2):e251-e257.
  • Li B, Wang R, Huang X, et al. Extracorporeal shock wave therapy promotes osteogenic differentiation in a rabbit osteoporosis model. Front Endocrinol. 2021;12:627718.
  • Mackert GA, Schulte M, Hirche C, et al. Low-energy extracorporeal shockwave therapy (ESWT) improves metaphyseal fracture healing in an osteoporotic rat model. PLOS One. 2017;12(12):e0189356.
  • Bulut O, Eroglu M, Ozturk H, et al. Extracorporeal shock wave treatment for defective nonunion of the radius: a rabbit model. J Orthop Surg. 2006;14(2):133–137.
  • Bereket C, Çakir-Özkan N, Önger ME, et al. The effect of different doses of extracorporeal shock waves on experimental model mandibular distraction. J Craniofac Surg. 2018;29(6):1666–1670.
  • Senel E, Ozkan E, Bereket MC, et al. The assessment of new bone formation induced by unfocused extracorporeal shock wave therapy applied on pre-surgical phase of distraction osteogenesis. Eur Oral Res. 2019;53(3):125–131.
  • Ginini JG, Emodi O, Sabo E, et al. Effects of timing of extracorporeal shock wave therapy on mandibular distraction osteogenesis: an experimental study in a rat model. J Oral Maxillofac Surg. 2019;77(3):629–638.
  • van der Jagt OP, Piscaer TM, Schaden W, et al. Unfocused extracorporeal shock waves induce anabolic effects in rat bone. J Bone Joint Surg Am. 2011;93(1):38–48.
  • Kearney CJ, Hsu HP, Spector M. The use of extracorporeal shock wave-stimulated periosteal cells for orthotopic bone generation. Tissue Eng Part A. 2012;18(13–14):1500–1508.
  • Barnes K, Lanz O, Werre S, et al. Comparison of autogenous cancellous bone grafting and extracorporeal shock wave therapy on osteotomy healing in the tibial tuberosity advancement procedure in dogs. Vet Comp Orthop Traumatol. 2015;28:207–214.
  • Atsawasuwan P, Chen Y, Ganjawalla K, et al. Extracorporeal shockwave treatment impedes tooth movement in rats. Head Face Med. 2018;14(1):24.