1,956
Views
1
CrossRef citations to date
0
Altmetric
Public Health

Concentrations and association between exposure to mixed perfluoroalkyl and polyfluoroalkyl substances and glycometabolism among adolescents

, , , , , , , & show all
Article: 2227844 | Received 11 Aug 2022, Accepted 16 Jun 2023, Published online: 24 Jun 2023

References

  • Sunderland EM, Hu XC, Dassuncao C, et al. A review of the pathways of human exposure to poly- and perfluoroalkyl substances (PFASs) and present understanding of health effects. J Expo Sci Environ Epidemiol. 2019;29(2):1–11. doi: 10.1038/s41370-018-0094-1.
  • Steenland K, Winquist A. PFAS and cancer, a scoping review of the epidemiologic evidence. Environ Res. 2021;194:110690. doi: 10.1016/j.envres.2020.110690.
  • Lindstrom AB, Strynar MJ, Libelo EL. Polyfluorinated compounds: past, present, and future. Environ Sci Technol. 2011;45(19):7954–7961. doi: 10.1021/es2011622.
  • Haug LS, Huber S, Becher G, et al. Characterisation of human exposure pathways to perfluorinated compounds–comparing exposure estimates with biomarkers of exposure. Environ Int. 2011;37(4):687–693. doi: 10.1016/j.envint.2011.01.011.
  • Zeng XW, Qian Z, Emo B, et al. Association of polyfluoroalkyl chemical exposure with serum lipids in children. Sci Total Environ. 2015;512-513:364–370. doi: 10.1016/j.scitotenv.2015.01.042.
  • Mora AM, Oken E, Rifas-Shiman SL, et al. Prenatal exposure to perfluoroalkyl substances and adiposity in early and mid-childhood. Environ Health Perspect. 2017;125(3):467–473. doi: 10.1289/EHP246.
  • Braun JM, Chen A, Romano ME, et al. Prenatal perfluoroalkyl substance exposure and child adiposity at 8 years of age: the HOME study. Obesity. 2016;24(1):231–237. doi: 10.1002/oby.21258.
  • Worley RR, Moore SM, Tierney BC, et al. Per- and polyfluoroalkyl substances in human serum and urine samples from a residentially exposed community. Environ Int. 2017;106:135–143. doi: 10.1016/j.envint.2017.06.007.
  • Cariou R, Veyrand B, Yamada A, et al. Perfluoroalkyl acid (PFAA) levels and profiles in breast milk, maternal and cord serum of French women and their newborns. Environ Int. 2015;84:71–81. doi: 10.1016/j.envint.2015.07.014.
  • Olsen GW, Burris JM, Ehresman DJ, et al. Half-life of ­serum elimination of perfluorooctanesulfonate, perfluorohexanesulfonate, and perfluorooctanoate in retired fluorochemical production workers. Environ Health Perspect. 2007;115(9):1298–1305. doi: 10.1289/ehp.10009.
  • Ren Y, Jin L, Yang F, et al. Concentrations of perfluoroalkyl and polyfluoroalkyl substances and blood glucose in pregnant women. Environ Health. 2020;19(1):88. doi: 10.1186/s12940-020-00640-8.
  • Alderete TL, Jin R, Walker DI, et al. Perfluoroalkyl substances, metabolomic profiling, and alterations in glucose homeostasis among overweight and obese Hispanic children: a proof-of-concept analysis. Environ Int. 2019;126:445–453. doi: 10.1016/j.envint.2019.02.047.
  • Mariussen E. Neurotoxic effects of perfluoroalkylated compounds: mechanisms of action and environmental relevance. Arch Toxicol. 2012;86(9):1349–1367. doi: 10.1007/s00204-012-0822-6.
  • Zeng HC, Zhang L, Li YY, et al. Inflammation-like glial response in rat brain induced by prenatal PFOS exposure. Neurotoxicology. 2011;32(1):130–139. doi: 10.1016/j.neuro.2010.10.001.
  • Du G, Sun J, Zhang Y. Perfluorooctanoic acid impaired glucose homeostasis through affecting adipose AKT pathway. Cytotechnology. 2018;70(1):479–487. doi: 10.1007/s10616-017-0164-6.
  • NHANES - About the National Health and Nutrition Examination Survey [Internet]. Centers for Disease Control and Prevention. Centers for Disease Control and Prevention; 2021 [cited 2022 Jun 18]. Available from: https://www.cdc.gov/nchs/nhanes/about_nhanes.htm
  • Centers for Disease Control and Prevention. [cited 2021 Jan 21]. Available from: https://wwwn.cdc.gov/nchs/data/nhanes/2017-2018/labmethods/PFAS-J-MET-508.pdf
  • Carrico C, Gennings C, Wheeler DC, et al. Characterization of weighted quantile sum regression for highly correlated data in a risk analysis setting. J Agric Biol Environ Stat. 2015;20(1):100–120. doi: 10.1007/s13253-014-0180-3.
  • Czarnota J, Gennings C, Colt JS, et al. Analysis of environmental chemical mixtures and non-Hodgkin lymphoma risk in the NCI-SEER NHL study. Environ Health Perspect. 2015;123(10):965–970. doi: 10.1289/ehp.1408630.
  • Czarnota J, Gennings C, Wheeler DC. Assessment of weighted quantile sum regression for modeling chemical mixtures and cancer risk. Cancer Inform. 2015;14(Suppl 2):159–171. doi: 10.4137/CIN.S17295.
  • Bobb JF, Valeri L, Claus Henn B, et al. Bayesian kernel machine regression for estimating the health effects of multi-pollutant mixtures. Biostatistics. 2015;16(3):493–508. doi: 10.1093/biostatistics/kxu058.
  • Wang X, Sun X, Zhang Y, et al. Identifying a critical window of maternal metal exposure for maternal and neonatal thyroid function in China: a cohort study. Environ Int. 2020;139:105696. doi: 10.1016/j.envint.2020.105696.
  • Andaluri G, Manickavachagam M, Suri R. Plastic toys as a source of exposure to bisphenol-A and phthalates at childcare facilities. Environ Monit Assess. 2018;190(2):65. doi: 10.1007/s10661-017-6438-9.
  • Czaplicka M. Sources and transformations of chlorophenols in the natural environment. Sci Total Environ. 2004;322(1-3):21–39. doi: 10.1016/j.scitotenv.2003.09.015.
  • Zhang Y, Dong T, Hu W, et al. Association between ­exposure to a mixture of phenols, pesticides, and phthalates and obesity: comparison of three statistical models. Environ Int. 2019;123:325–336. doi: 10.1016/j.envint.2018.11.076.
  • Blount BC, Pirkle JL, Osterloh JD, et al. Urinary perchlorate and thyroid hormone levels in adolescent and adult men and women living in the United States. Environ Health Perspect. 2006;114(12):1865–1871. doi: 10.1289/ehp.9466.
  • Gyllenhammar I, Benskin JP, Sandblom O, et al. Perfluoroalkyl acids (PFAAs) in serum from 2-4-month-old infants: influence of maternal serum concentration, gestational age, breast-feeding, and contaminated drinking water. Environ Sci Technol. 2018;52(12):7101–7110. doi: 10.1021/acs.est.8b00770.
  • VanNoy BN, Lam J, Zota AR. Breastfeeding as a predictor of serum concentrations of per- and polyfluorinated alkyl substances in reproductive-aged women and young children: a rapid systematic review. Curr Environ Health Rep. 2018;5(2):213–224. doi: 10.1007/s40572-018-0194-z.
  • Koponen J, Winkens K, Airaksinen R, et al. Longitudinal trends of per- and polyfluoroalkyl substances in children’s serum. Environ Int. 2018;121(Pt 1):591–599. doi: 10.1016/j.envint.2018.09.006.
  • Symonds ME, Sebert SP, Hyatt MA, et al. Nutritional programming of the metabolic syndrome. Nat Rev Endocrinol. 2009;5(11):604–610. doi: 10.1038/nrendo.2009.195.
  • Fenton SE, Ducatman A, Boobis A, et al. Per- and polyfluoroalkyl substance toxicity and human health review: current state of knowledge and strategies for informing future research. Environ Toxicol Chem. 2021;40(3):606–630. doi: 10.1002/etc.4890.
  • Fleisch AF, Rifas-Shiman SL, Mora AM, et al. Early-Life exposure to perfluoroalkyl substances and childhood metabolic function. Environ Health Perspect. 2017;125(3):481–487. doi: 10.1289/EHP303.
  • Friend A, Craig L, Turner S. The prevalence of metabolic syndrome in children: a systematic review of the literature. Metab Syndr Relat Disord. 2013;11(2):71–80. doi: 10.1089/met.2012.0122.
  • Koshy TT, Attina TM, Ghassabian A, et al. Serum perfluoroalkyl substances and cardiometabolic consequences in adolescents exposed to the world trade center disaster and a matched comparison group. Environ Int. 2017;109:128–135. doi: 10.1016/j.envint.2017.08.003.
  • Nelson JW, Hatch EE, Webster TF. Exposure to polyfluoroalkyl chemicals and cholesterol, body weight, and insulin resistance in the general U.S. population. Environ Health Perspect. 2010;118(2):197–202. doi: 10.1289/ehp.0901165.
  • Vryonidou A, Paschou SA, Muscogiuri G, et al. Mechanisms in endocrinology: metabolic syndrome through the female life cycle. Eur J Endocrinol. 2015;173(5):R153–R163. doi: 10.1530/EJE-15-0275.
  • Lopez-Espinosa MJ, Fletcher T, Armstrong B, et al. Association of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) with age of puberty among children living near a chemical plant. Environ Sci Technol. 2011;45(19):8160–8166. doi: 10.1021/es1038694.
  • Karpe F, Dickmann JR, Frayn KN. Fatty acids, obesity, and insulin resistance: time for a reevaluation. Diabetes. 2011;60(10):2441–2449. doi: 10.2337/db11-0425.
  • Guruge KS, Yeung LW, Yamanaka N, et al. Gene expression profiles in rat liver treated with perfluorooctanoic acid (PFOA). Toxicol Sci. 2006;89(1):93–107. doi: 10.1093/toxsci/kfj011.
  • Hu W, Jones PD, Celius T, et al. Identification of genes responsive to PFOS using gene expression profiling. Environ Toxicol Pharmacol. 2005;19(1):57–70. doi: 10.1016/j.etap.2004.04.008.
  • Wolf CJ, Schmid JE, Lau C, et al. Activation of mouse and human peroxisome proliferator-activated receptor-alpha (PPARα) by perfluoroalkyl acids (PFAAs): further investigation of C4-C12 compounds. Reprod Toxicol. 2012;33(4):546–551. doi: 10.1016/j.reprotox.2011.09.009.
  • Vanden Heuvel JP, Thompson JT, Frame SR, et al. Differential activation of nuclear receptors by perfluorinated fatty acid analogs and natural fatty acids: a comparison of human, mouse, and rat peroxisome proliferator-activated receptor-alpha, -beta, and -gamma, liver X receptor-beta, and retinoid X receptor-alpha. Toxicol Sci. 2006;92(2):476–489. doi: 10.1093/toxsci/kfl014.
  • Takacs ML, Abbott BD. Activation of mouse and human peroxisome proliferator-activated receptors (alpha, beta/delta, gamma) by perfluorooctanoic acid and perfluorooctane sulfonate. Toxicol Sci. 2007;95(1):108–117. doi: 10.1093/toxsci/kfl135.
  • Ojo AF, Peng C, Ng JC. Combined effects and toxicological interactions of perfluoroalkyl and polyfluoroalkyl substances mixtures in human liver cells (HepG2). Environ Pollut. 2020;263(Pt B):114182. doi: 10.1016/j.envpol.2020.114182.