724
Views
0
CrossRef citations to date
0
Altmetric
Infectious Diseases

Identification of spinal tuberculosis subphenotypes using routine clinical data: a study based on unsupervised machine learning

, , , , , , , , , , , & show all
Article: 2249004 | Received 27 Jun 2023, Accepted 11 Aug 2023, Published online: 23 Aug 2023

References

  • Chakaya J, Khan M, Ntoumi F, et al. Global tuberculosis report 2020 – reflections on the global TB burden, treatment and prevention efforts. Int J Infect Dis. 2021;113(Suppl 1):1–10. doi: 10.1016/j.ijid.2021.02.107.
  • Garcia-Rodriguez JF, Alvarez-Diaz H, Lorenzo-Garcia MV, et al. Extrapulmonary tuberculosis: epidemiology and risk factors. Enferm Infecc Microbiol Clin. 2011;29(7):502–509. doi: 10.1016/j.eimc.2011.03.005.
  • Khanna K, Sabharwal S. Spinal tuberculosis: a comprehensive review for the modern spine surgeon. Spine J. 2019;19(11):1858–1870. doi: 10.1016/j.spinee.2019.05.002.
  • Zhuang QK, Li W, Chen Y, et al. Application of oblique lateral interbody fusion in treatment of lumbar spinal tuberculosis in adults. Orthop Surg. 2021;13(4):1299–1308. doi: 10.1111/os.12955.
  • Srinivasa R, Furtado SV, Kunikullaya KU, et al. Surgical management of spinal tuberculosis – a retrospective observational study from a tertiary care center in Karnataka. Asian J Neurosurg. 2021;16(4):695–700. doi: 10.4103/ajns.AJNS_78_21.
  • Cadena AM, Fortune SM, Flynn JL. Heterogeneity in tuberculosis. Nat Rev Immunol. 2017;17(11):691–702. doi: 10.1038/nri.2017.69.
  • Maddali MV, Churpek M, Pham T, et al. Validation and utility of ARDS subphenotypes identified by machine-learning models using clinical data: an observational, multicohort, retrospective analysis. Lancet Respir Med. 2022;10(4):367–377. doi: 10.1016/S2213-2600(21)00461-6.
  • Kobayashi M, Huttin O, Magnusson M, et al. Machine learning-derived echocardiographic phenotypes predict heart failure incidence in asymptomatic individuals. JACC Cardiovasc Imaging. 2022;15(2):193–208. doi: 10.1016/j.jcmg.2021.07.004.
  • Orjuela-Canon AD, Camargo Mendoza JE, Awad Garcia CE, et al. Tuberculosis diagnosis support analysis for precarious health information systems. Comput Methods Programs Biomed. 2018;157:11–17. doi: 10.1016/j.cmpb.2018.01.009.
  • Orjuela-Canon AD, Jutinico AL, Awad C, et al. Machine learning in the loop for tuberculosis diagnosis support. Front Public Health. 2022;10:876949. doi: 10.3389/fpubh.2022.876949.
  • Aguiar FS, Torres RC, Pinto JV, et al. Development of two artificial neural network models to support the diagnosis of pulmonary tuberculosis in hospitalized ­patients in Rio De Janeiro, Brazil. Med Biol Eng Comput. 2016;54(11):1751–1759. doi: 10.1007/s11517-016-1465-1.
  • Wang Z, Tang Z, Zhu Y, et al. AD risk score for the early phases of disease based on unsupervised machine learning. Alzheimers Dement. 2020;16(11):1524–1533. doi: 10.1002/alz.12140.
  • Sanchez-Pinto LN, Luo Y, Churpek MM. Big data and data science in critical care. Chest. 2018;154(5):1239–1248. doi: 10.1016/j.chest.2018.04.037.
  • Reddy K, Sinha P, O’Kane CM, et al. Subphenotypes in critical care: translation into clinical practice. Lancet Respir Med. 2020;8(6):631–643. doi: 10.1016/S2213-2600(20)30124-7.
  • Koo HK, Min J, Kim HW, et al. Cluster analysis categorizes five phenotypes of pulmonary tuberculosis. Sci Rep. 2022;12(1):10084. doi: 10.1038/s41598-022-13526-1.
  • Massaad E, Bridge CP, Kiapour A, et al. Evaluating frailty, mortality, and complications associated with metastatic spine tumor surgery using machine learning-derived body composition analysis. J Neurosurg Spine. 2022;37(2): 263-273..
  • Chaudhary K, Vaid A, Duffy A, et al. Utilization of deep learning for subphenotype identification in sepsis-associated acute kidney injury. Clin J Am Soc Nephrol. 2020;15(11):1557–1565. doi: 10.2215/CJN.09330819.
  • Kaller R, Arbanasi EM, Muresan AV, et al. The predictive value of systemic inflammatory markers, the prognostic nutritional index, and measured vessels’ diameters in arteriovenous fistula maturation failure. Life. 2022;12(9):1447. doi: 10.3390/life12091447.
  • Nedyalkova M, Madurga S, Simeonov V. Combinatorial K-Means clustering as a machine learning tool applied to diabetes mellitus type 2. Int J Environ Res Public Health. 2021;18(4):1919. doi: 10.3390/ijerph18041919.
  • Rollan-Martinez-Herrera M, Kerexeta-Sarriegi J, Gil-Anton J, et al. K-Means clustering for shock classification in pediatric intensive care units. Diagnostics. 2022;12(8):1932. doi: 10.3390/diagnostics12081932.
  • Wu S, Liu S, Chen N, et al. Genome-wide identification of immune-related alternative splicing and splicing regulators involved in abdominal aortic aneurysm. Front Genet. 2022;13:816035. doi: 10.3389/fgene.2022.816035.
  • Sun X, Zhou C, Zhu J, et al. Identification of clinical heterogeneity and construction of a novel subtype predictive model in patients with ankylosing spondylitis: an unsupervised machine learning study. Int Immunopharmacol. 2023;117:109879. doi: 10.1016/j.intimp.2023.109879.
  • Benito-Leon J, Del Castillo MD, Estirado A, et al. Using unsupervised machine learning to identify age- and sex-independent severity subgroups among patients with COVID-19: an observational longitudinal study. J Med Internet Res. 2021;23(5):e25988. doi: 10.2196/25988.
  • Bakker DS, de Graaf M, Nierkens S, et al. Unraveling heterogeneity in pediatric atopic dermatitis: identification of serum biomarker based patient clusters. J Allergy Clin Immunol. 2022;149(1):125–134. doi: 10.1016/j.jaci.2021.06.029.
  • Hu C, Li L, Huang W, et al. Interpretable machine learning for early prediction of prognosis in sepsis: a discovery and validation study. Infect Dis Ther. 2022;11(3):1117–1132. doi: 10.1007/s40121-022-00628-6.
  • Hu C, Li Y, Wang F, et al. Application of machine learning for clinical subphenotype identification in sepsis. Infect Dis Ther. 2022;11(5):1949–1964. doi: 10.1007/s40121-022-00684-y.
  • Zhou C, Huang S, Liang T, et al. Machine learning-based clustering in cervical spondylotic myelopathy patients to identify heterogeneous clinical characteristics. Front Surg. 2022;9:935656. doi: 10.3389/fsurg.2022.935656.
  • Sweatt AJ, Hedlin HK, Balasubramanian V, et al. Discovery of distinct immune phenotypes using machine learning in pulmonary arterial hypertension. Circ Res. 2019;124(6):904–919. doi: 10.1161/CIRCRESAHA.118.313911.
  • Bray C, Bell LN, Liang H, et al. Erythrocyte sedimentation rate and C-reactive protein measurements and their relevance in clinical medicine. WMJ. 2016;115(6):317–321.
  • Kim JH, Ahn JY, Jeong SJ, et al. Prognostic factors for unfavourable outcomes of patients with spinal tuberculosis in a country with an intermediate tuberculosis burden: a multicentre cohort study. Bone Joint J. 2019;101-B(12):1542–1549. doi: 10.1302/0301-620X.101B12.BJJ-2019-0558.R1.
  • Buttle TS, Hummerstone CY, Billahalli T, et al. The monocyte-to-lymphocyte ratio: sex-specific differences in the tuberculosis disease spectrum, diagnostic indices and defining normal ranges. PLoS One. 2021;16(8):e0247745. doi: 10.1371/journal.pone.0247745.
  • Chen L, Liu C, Liang T, et al. Monocyte-to-Lymphocyte ratio was an independent factor of the severity of ­spinal tuberculosis. Oxid Med Cell Longev. 2022;2022:7340330.
  • Refai A, Gritli S, Barbouche MR, et al. Mycobacterium tuberculosis virulent factor ESAT-6 drives macrophage differentiation toward the pro-inflammatory M1 phenotype and subsequently switches it to the anti-inflammatory M2 phenotype. Front Cell Infect Microbiol. 2018;8:327. doi: 10.3389/fcimb.2018.00327.
  • Gravani F, Papadaki I, Antypa E, et al. Subclinical atherosclerosis and impaired bone health in patients with primary Sjogren’s syndrome: prevalence, clinical and laboratory associations. Arthritis Res Ther. 2015;17(1):99. doi: 10.1186/s13075-015-0613-6.
  • Zhou J, Song S, Zhang Y, et al. OCT-Based biomarkers are associated with systemic inflammation in patients with treatment-naive diabetic macular edema. Ophthalmol Ther. 2022;11(6):2153–2167. doi: 10.1007/s40123-022-00576-x.
  • Dogdus M, Dindas F, Yenercag M, et al. The role of systemic immune inflammation index for predicting saphenous vein graft disease in patients with coronary artery bypass grafting. Angiology. 2023;74(6):579–586. doi: 10.1177/00033197221129356.
  • Ghobadi H, Mohammadshahi J, Javaheri N, et al. Role of leukocytes and systemic inflammation indexes (NLR, PLR, MLP, dNLR, NLPR, AISI, SIR-I, and SII) on admission predicts in-hospital mortality in non-elderly and elderly COVID-19 patients. Front Med. 2022;9:916453. doi: 10.3389/fmed.2022.916453.
  • He Z, Zhou K, Tang K, et al. Perioperative hypoalbuminemia is a risk factor for wound complications following posterior lumbar interbody fusion. J Orthop Surg Res. 2020;15(1):538. doi: 10.1186/s13018-020-02051-4.
  • Chen L, Liu C, Ye Z, et al. Predicting surgical site ­infection risk after spinal tuberculosis surgery: development and validation of a nomogram. Surg Infect. 2022;23(6):564–575. doi: 10.1089/sur.2022.042.