826
Views
0
CrossRef citations to date
0
Altmetric
Physical Medicine & Rehabilitation

Neuromuscular adaptations after osseointegration of a bone-anchored prosthesis in a unilateral transfemoral amputee – a case study

, , , , , , , , , & show all
Article: 2255206 | Received 04 Jul 2023, Accepted 30 Aug 2023, Published online: 07 Sep 2023

References

  • Berry D. Microprocessor prosthetic knees. Phys Med Rehabil Clin N Am. 2006;17(1):1–9. doi: 10.1016/j.pmr.2005.10.006.
  • Campbell JH, Stevens PM, Wurdeman SR. OASIS 1: retrospective analysis of four different microprocessor knee types. J Rehabil Assist Technol Eng. 2020;7:2055668320968476. doi: 10.1177/2055668320968476.
  • Farina D, Vujaklija I, Brånemark R, et al. Toward higher-performance bionic limbs for wider clinical use. Nat Biomed Eng. 2023;7(4):473–485. doi: 10.1038/s41551-021-00732-x.
  • Thurston AJ. Paré and prosthetics: the early history of artificial limbs. ANZ J Surg. 2007;77(12):1114–1119. doi: 10.1111/j.1445-2197.2007.04330.x.
  • Pasluosta C, Kiele P, Čvančara P, et al. Bidirectional bionic limbs: a perspective bridging technology and physiology. J Neural Eng. 2022;19(1):013001. doi: 10.1088/1741-2552/ac4bff.
  • Pasluosta C, Kiele P, Stieglitz T. Paradigms for restoration of somatosensory feedback via stimulation of the peripheral nervous system. Clin Neurophysiol. 2018;129(4):851–862. doi: 10.1016/j.clinph.2017.12.027.
  • Valle G, Saliji A, Fogle E, et al. Mechanisms of neuro-robotic prosthesis operation in leg amputees. Sci Adv. 2021;7(17):eabd8354. doi: 10.1126/sciadv.abd8354.
  • Barnett CT, Vanicek N, Polman RCJ. Postural responses during volitional and perturbed dynamic balance tasks in new lower limb amputees: a longitudinal study. Gait Posture. 2013;37(3):319–325. doi: 10.1016/j.gaitpost.2012.07.023.
  • Fuchs K, Krauskopf T, Lauck TB, et al. Influence of augmented visual feedback on balance control in unilateral transfemoral amputees. Front Neurosci. 2021;15:727527. doi: 10.3389/fnins.2021.727527.
  • Jaegers SM, Arendzen JH, de Jongh HJ. Prosthetic gait of unilateral transfemoral amputees: a kinematic study. Arch Phys Med Rehabil. 1995;76(8):736–743. doi: 10.1016/s0003-9993(95)80528-1.
  • Jaegers SM, Arendzen JH, de Jongh HJ. Changes in hip muscles after above-knee amputation. Clin Orthop Relat Res. 1995;319:276–284.
  • Arifin N, Azuan N, Osman A, et al. Postural stability characteristics of transtibial amputees wearing different prosthetic foot types 2014;2014. ScientificWorldJournal. 2014;2014:856279. doi: 10.1155/2014/856279.
  • Petrofsky JS, Khowailed IA. Postural sway and motor control in trans-tibial amputees as assessed by electroencephalography during eight balance training tasks. Med Sci Monit. 2014;20:2695–2704. doi: 10.12659/MSM.891361.
  • Claret CR, Herget GW, Kouba L, et al. Neuromuscular adaptations and sensorimotor integration following a unilateral transfemoral amputation. J NeuroEngineering Rehabil. 2019;16(1):115. doi: 10.1186/s12984-019-0586-9.
  • Krauskopf T, Lauck TB, Klein L, et al. Unilateral transfemoral amputees exhibit altered strength and dynamics of muscular co-activation modulated by visual feedback. J. Neural Eng. 2022;19(1):016024. doi: 10.1088/1741-2552/ac5091.
  • Ku PX, Abu Osman NA, Wan Abas WAB. Balance control in lower extremity amputees during quiet standing: a systematic review. Gait Posture. 2014;39(2):672–682. doi: 10.1016/j.gaitpost.2013.07.006.
  • Prieto TE, Myklebust JB, Hoffmann RG, et al. Measures of postural steadiness: differences between healthy young and elderly adults. IEEE Trans Biomed Eng. 1996;43(9):956–966. doi: 10.1109/10.532130.
  • Winter DA. Human balance and posture control during standing and walking. Gait Posture. 1995;3(4):193–214. doi: 10.1016/0966-6362(96)82849-9.
  • Lipsitz LA, Goldberger AL. Loss of “complexity” and aging. JAMA. 1992;267(13):1806–1809. doi: 10.1001/jama.1992.03480130122036.
  • Stergiou N, Decker LM. Human movement variability, nonlinear dynamics, and pathology: is there a connection? Hum Mov Sci. 2011;30(5):869–888. doi: 10.1016/j.humov.2011.06.002.
  • Dudek NL, Marks MB, Marshall SC, et al. Dermatologic conditions associated with use of a lower-extremity prosthesis. Arch Phys Med Rehabil. 2005;86(4):659–663. doi: 10.1016/j.apmr.2004.09.003.
  • Meulenbelt HEJ, Dijkstra PU, Jonkman MF, et al. Skin problems in lower limb amputees: a systematic review. Disabil Rehabil. 2006;28(10):603–608. doi: 10.1080/09638280500277032.
  • Hagberg K, Brånemark R. Consequences of non-vascular trans-femoral amputation: a survey of quality of life, prosthetic use and problems. Prosthet Orthot Int. 2001;25(3):186–194. doi: 10.1080/03093640108726601.
  • Horne CE, Neil JA. Quality of life in patients with prosthetic legs: a comparison study. JPO J Prosthet Orthot. 2009;21(3):154–159. doi: 10.1097/JPO.0b013e3181b16f18.
  • Sinha R, van den Heuvel WJA, Arokiasamy P. Factors affecting quality of life in lower limb amputees. Prosthet Orthot Int. 2011;35(1):90–96. doi: 10.1177/0309364610397087.
  • Li Y, Brånemark R. Osseointegrated prostheses for rehabilitation following amputation: the pioneering Swedish model. Unfallchirurg. 2017;120(4):285–292. doi: 10.1007/s00113-017-0331-4.
  • Pezzin LE, Dillingham TR, Mackenzie EJ, et al. Use and satisfaction with prosthetic limb devices and related services. Arch Phys Med Rehabil. 2004;85(5):723–729. doi: 10.1016/j.apmr.2003.06.002.
  • Hagberg K, Häggström E, Uden M, et al. Socket versus bone-anchored trans-femoral prostheses: hip range of motion and sitting comfort. Prosthet Orthot Int. 2005;29(2):153–163. doi: 10.1080/03093640500238014.
  • Klineberg I, Calford MB, Dreher B, et al. A consensus statement on osseoperception. Clin Exp Pharmacol Physiol. 2005;32(1–2):145–146. doi: 10.1111/j.1440-1681.2005.04144.x.
  • Hagberg K, Häggström E, Jönsson S, et al. Osseoperception and osseointegrated prosthetic limbs. In: Gallagher P, Desmond D, MacLachlan M, editors. Psychoprosthetics. London: Springer London; 2008, p. 131–140. doi: 10.1007/978-1-84628-980-4_10.
  • Mirulla AI, Di Paolo S, Di Simone F, et al. Biomechanical analysis of two types of osseointegrated transfemoral prosthesis. Appl Sci. 2020;10(22):8263. doi: 10.3390/app10228263.
  • Sullivan J, Uden M, Robinson KP, et al. Rehabilitation of the trans-femoral amputee with an osseointegrated prosthesis: the United Kingdom experience. Prosthet Orthot Int. 2003;27(2):114–120. doi: 10.1080/03093640308726667.
  • Gaffney BMM, Davis-Wilson HC, Christiansen CL, et al. Osseointegrated prostheses improve balance and balance confidence in individuals with unilateral transfemoral limb loss. Gait Posture. 2023;100:132–138. doi: 10.1016/j.gaitpost.2022.12.011.
  • Frossard L, Hagberg K, Häggström E, et al. Functional outcome of transfemoral amputees fitted with an osseointegrated fixation: temporal gait characteristics. JPO J Prosthet Orthot. 2010;22(1):11–20. doi: 10.1097/JPO.0b013e3181ccc53d.
  • Darter BJ, Syrett ED, Foreman KB, et al. Changes in frontal plane kinematics over 12-months in individuals with the percutaneous osseointegrated prosthesis (POP). PLOS One. 2023;18(2):e0281339. doi: 10.1371/journal.pone.0281339.
  • Tranberg R, Zügner R, Kärrholm J. Improvements in hip- and pelvic motion for patients with osseointegrated trans-femoral prostheses. Gait Posture. 2011;33(2):165–168. doi: 10.1016/j.gaitpost.2010.11.004.
  • Vandenberg NW, Stoneback JW, Davis-Wilson H, et al. Unilateral transfemoral osseointegrated prostheses improve joint loading during walking. J Biomech. 2023;155:111658. doi: 10.1016/j.jbiomech.2023.111658.
  • Gailey RS, Kristal A, Al Muderis M, et al. Comparison of prosthetic mobility and balance in transfemoral amputees with bone-anchored prosthesis vs. socket prosthesis. Prosthet Orthot Int. 2023;47(2):130–136. doi: 10.1097/PXR.0000000000000189.
  • Pantall A, Ewins D. Muscle activity during stance phase of walking: comparison of males with transfemoral amputation with osseointegrated fixations to nondisabled male volunteers. J Rehabil Res Dev. 2013;50(4):499–514. doi: 10.1682/jrrd.2011.10.0204.
  • Pantall A, Durham S, Ewins D. Surface electromyographic activity of five residual limb muscles recorded during isometric contraction in transfemoral amputees with osseointegrated prostheses. Clin Biomech. 2011;26(7):760–765. doi: 10.1016/j.clinbiomech.2011.03.008.
  • Hoellwarth JS, Tetsworth K, Kendrew J, et al. Periprosthetic osseointegration fractures are infrequent and management is familiar. Bone Joint J. 2020;102-B(2):162–169. doi: 10.1302/0301-620X.102B2.BJJ-2019-0697.R2.
  • Tillander J, Hagberg K, Berlin Ö, et al. Osteomyelitis risk in patients with transfemoral amputations treated with osseointegration prostheses. Clin Orthop Relat Res. 2017;475(12):3100–3108. doi: 10.1007/s11999-017-5507-2.
  • Ting LH. Dimensional reduction in sensorimotor systems: a framework for understanding muscle coordination of posture. Computational neuroscience: theoretical insights into brain function. vol. 165. Amsterdam: Elsevier; 2007. p. 299–321. doi: 10.1016/S0079-6123(06)65019-X.
  • Park K-H, Lim J-Y, Kim T-H. The effects of ankle strategy exercises on unstable surfaces on dynamic balance and changes in the COP. J Phys Ther Sci. 2016;28(2):456–459. doi: 10.1589/jpts.28.456.
  • Hermens H, Freriks B, Merletti R, Hägg G, Stegeman DF, Blok JH, Hägg G, Blok WJ. SENIAM 8: European recommendations for surface electromyography. Roessingh Research and Development; 1999.
  • von Tscharner V. Intensity analysis in time-frequency space of surface myoelectric signals by wavelets of specified resolution. J Electromyogr Kinesiol. 2000;10(6):433–445. doi: 10.1016/S1050-6411(00)00030-4.
  • von Tscharner V, Barandun M. Wavelet based correlation and coherence analysis reveals frequency dependent motor unit conduction velocity of the abductor pollicis brevis muscle. J Electromyogr Kinesiol. 2010;20(6):1088–1096. doi: 10.1016/j.jelekin.2010.06.004.
  • Pasluosta C, Hannink J, Gaßner H, et al. Motor output complexity in Parkinson’s disease during quiet standing and walking: analysis of short-term correlations using the entropic half-life. Hum Mov Sci. 2018;58:185–194. doi: 10.1016/j.humov.2018.02.005.
  • Zandiyeh P, von Tscharner V. Reshape scale method: a novel multi scale entropic analysis approach. Phys A: Stat Mech Appl. 2013;392(24):6265–6272. doi: 10.1016/j.physa.2013.08.023.
  • R Foundation for Statistical Computing RCT. R: a Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing; 2023.
  • Danna-Dos-Santos A, Shapkova EY, Shapkova AL, et al. Postural control during upper body locomotor-like movements: similar synergies based on dissimilar muscle modes. Exp Brain Res. 2009;193(4):565–579. doi: 10.1007/s00221-008-1659-3.
  • von Tscharner V, Ullrich M, Mohr M, et al. Beta, gamma band, and high-frequency coherence of EMGs of vasti muscles caused by clustering of motor units. Exp Brain Res. 2018;236(11):3065–3075. doi: 10.1007/s00221-018-5356-6.
  • Myers LJ, Lowery M, O’Malley M, et al. Rectification and non-linear pre-processing of EMG signals for cortico-muscular analysis. J Neurosci Methods. 2003;124(2):157–165. doi: 10.1016/s0165-0270(03)00004-9.
  • Neto OP, Christou EA. Rectification of the EMG signal impairs the identification of oscillatory input to the muscle. J Neurophysiol. 2010;103(2):1093–1103. doi: 10.1152/jn.00792.2009.
  • Wakeling JM, Rozitis AI. Spectral properties of myoelectric signals from different motor units in the leg extensor muscles. J Exp Biol. 2004;207(Pt 14):2519–2528. doi: 10.1242/jeb.01042.
  • Miller AI, Heath EM, Dickinson JM, et al. Relationship between muscle fiber type and reactive balance: a preliminary study. J Mot Behav. 2015;47(6):497–502. doi: 10.1080/00222895.2015.1015676.
  • Pantall A, Durham S, Ewins D. Variability of SEMG of five stump muscles during stance phase of gait in TF amputees with osseointegrated prostheses. Gait Posture. 2006;24: s 153–S154. doi: 10.1016/j.gaitpost.2006.11.106.
  • Campbell E, Phinyomark A, Scheme E. Current trends and confounding factors in myoelectric control: limb position and contraction intensity. Sensors. 2020;20(6):1613. doi: 10.3390/s20061613.
  • Quijoux F, Vienne-Jumeau A, Bertin-Hugault F, et al. Center of pressure characteristics from quiet standing measures to predict the risk of falling in older adults: a protocol for a systematic review and meta-analysis. Syst Rev. 2019;8(1):232. doi: 10.1186/s13643-019-1147-9.