815
Views
1
CrossRef citations to date
0
Altmetric
Toxicology

Cytotoxic effects of dose dependent inorganic magnesium oxide nanoparticles on the reproductive organs of rats

ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Article: 2258917 | Received 14 May 2023, Accepted 01 Sep 2023, Published online: 28 Sep 2023

References

  • Khan I, Saeed K, Khan I. Nanoparticles: properties, ­applications and toxicities. Arabian J Chem. 2019;12(7):1–15. doi: 10.1016/j.arabjc.2017.05.011.
  • Kim D, Shin K, Kwon SG, et al. Synthesis and biomedical applications of multifunctional nanoparticles. Adv Mater. 2018;30(49):e1802309. doi: 10.1002/adma.201802309.
  • Singh RP. Ch 14 Application of nanomaterials towards development of nanobiosensors and their utility in agriculture. In: Prasad R; Manoj K; Kumar V, editors. “Nanotechnology: an agricultural paradigm” New York, USA: Springer Publisher; 2017, pp 293–303.
  • Duarah S, Pujari K, Durai RD, et al. Nanotechnology based cosmeceuticals: a review. Int J Appl Pharm. 2016;8:8–12.
  • Iavicoli I, Leso V, Beezhold DH, et al. Nanotechnology in agriculture: opportunities, toxicological implications, and occupational risks. Toxicol Appl Pharmacol. 2017;329:96–111. doi: 10.1016/j.taap.2017.05.025.
  • Naresh V, Lee N. A review on biosensors and recent development of nanostructured materials-enabled biosensors. Sensors. 2021;21(4):1109. doi: 10.3390/s21041109.
  • Cheng Z, Li M, Raja Dey R, et al. Nanomaterials for cancer therapy: current progress and perspectives. J Hematol Oncol. 2021;14(1):85. doi: 10.1186/s13045-021-01096-0.
  • Yudaev P, Chuev V, Klyukin B, et al. Polymeric dental nanomaterials: antimicrobial action. Polymers. 2022;14(5):864. doi: 10.3390/polym14050864.
  • Mitchell MJ, Billingsley MM, Haley RM, et al. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov. 2021;20(2):101–124. – doi: 10.1038/s41573-020-0090-8.
  • Khan M, Khan MSA, Borah KK, et al. The potential exposure and hazards of metal-based nanoparticles on plants and environment, with special emphasis on ZnO NPs, TiO2 NPs, and AgNPs: a review. Environ Adv. 2021;6:100128. doi: 10.1016/j.envadv.2021.100128.
  • Asare N, Instanes C, Sandberg WJ, et al. Cytotoxic and genotoxic effects of silver nanoparticles in testicular cells. Toxicology. 2012;291(1-3):65–72. doi: 10.1016/j.tox.2011.10.022.
  • Singh SP, Kumari M, Kumari SI, et al. Genotoxicity of nano-and micron-sized manganese oxide in rats after acute oral treatment. Mutat Res. 2013;754(1–2):39–50. doi: 10.1016/j.mrgentox.2013.04.003.
  • Singh SP, Kumari M, Kumari SI, et al. Toxicity assessment of manganese oxide micro and nanoparticles in Wistar rats after 28 days of repeated oral exposure. J Appl Toxicol. 2013b;33(10):1165–1179. doi: 10.1002/jat.2887.
  • Singh SP, Rahman MF, Murty USN, et al. Comparative study of genotoxicity and tissue distribution of nano and micron sized iron oxide in rats after acute oral treatment. Toxicol Appl Pharmacol. 2013c;266(1):56–66. doi: 10.1016/j.taap.2012.10.016.
  • Liu Y, Li H, Xiao K. Distribution and biological effects of nanoparticles in the reproductive system. Curr Drug Metab. 2016;17(5):478–496. doi: 10.2174/1389200217666160105111436.
  • Ema M, Okuda H, Gamo M, et al. A review of reproductive and developmental toxicity of silver nanoparticles in laboratory animals. Reprod Toxicol. 2017;67:149–164. doi: 10.1016/j.reprotox.2017.01.005.
  • Wang R, Song S, Wu J, et al. Potential adverse effects of nanoparticles on the reproductive system. Int J Nanomedicine. 2018;13:8487–8506. doi: 10.2147/IJN.S170723.
  • Abdollahii S, Jadidi F, Safari M, et al. Adverse effects of some of the most widely used metal nanoparticles on the reproductive system. J Infertil Reprod Biol. 2020;8(3):22–32.
  • Limongi T, 2022). Printed Edition of the Special Issue Published in Materials. Ed. Tania Limongi, DISAT Politecnico di Torino Corso DucaDegli Abruzzi 24, Italy.
  • Nikolova MP, Chavali MS. Metal oxide nanoparticles as biomedical materials. Biomimetics. 2020;5(2):27. doi: 10.3390/biomimetics5020027.
  • Al-Musawi MMS, Al-Shmgani H, Al-Bairuty GA. Histopathological and biochemical comparative study of copper oxide nanoparticles and copper sulphate toxicity in male albino mice reproductive system. Int J Biomater. 2022;2022:4877637–4877612. doi: 10.1155/2022/4877637.
  • Vassal M, Rebelo S, de L, et al. Metal oxide nanoparticles: evidence of adverse effects on the male reproductive system. Int J Mol Sci. 2021;22(15):8061. doi: 10.3390/ijms22158061.
  • Fernandes M, Rb Singh K, Sarkar T, et al. Recent applications of magnesium oxide (MgO) nanoparticles in various domains. Adv Mater Lett. 2020;11(8):1–10. doi: 10.5185/amlett.2020.081543.
  • Krishnamoorthy K, Manivannan G, Kim SJ, et al. Antibacterial activity of MgO nanoparticles based on lipid peroxidation by oxygen vacancy. J Nanopart Res. 2012;14(9):1063. doi: 10.1007/s11051-012-1063-6.
  • Krishnamoorthy K, Moon JY, Hyun HB, et al. Mechanistic investigation on the toxicity of MgO nanoparticles toward cancer cells. J Mater Chem. 2012;22(47):24610–24617. doi: 10.1039/c2jm35087d.
  • Jeevanandam J, Chan YS, Danquah MK. Evaluating the antibacterial activity of MgO nanoparticles synthesized from aqueous leaf extract. Med. One. 2019;4:e190011.
  • Naguib G, Hassan A, Al-Hazmi F, et al.. Zein based magnesium oxide nanowires: effect of anionic charge on size, release and stability. Digest J nanomater biostruct. 2017;12. 741–749.
  • Naguib GH, Hosny KM, Hassan AH, et al. Zein based magnesium oxide nanoparticles: assessment of antimicrobial activity for dental implications. Paki J Pharm Sci. 2018;31(1)(Suppl):245–250.
  • Naguib GH, Nassar HM, Hamed MT. Antimicrobial properties of dental cements modified with zein-coated magnesium oxide nanoparticles. Bioact Mater. 2022;8:49–56. doi: 10.1016/j.bioactmat.2021.06.011.
  • Di D, He Z, Sun Z, et al. A new nano-cryosurgical modality for tumor treatment using biodegradable MgO nanoparticles. Nanomedicine. 2012;8(8):1233–1241. doi: 10.1016/j.nano.2012.02.010.
  • Wahab R, Ansari SG, Dar MA, et al. “Synthesis of magnesium oxide nanoparticles by sol-gel process, In Materials Science Forum (Vol. 558), Trans Tech Publications Ltd.,” 2007, 983–986. doi: 10.4028/www.scientific.net/MSF.558-559.983.
  • Alaparthi KK, Rajendra Kumar K, Sreedhar Bojja S, et al. A facile and eco-friendly approach for synthesis of magnesium oxide nanoparticles and their antibacterial activity. J Anal Sci Technol. 2018;9(1):21.
  • Sahayaraj S, Shanmugavel S, Gopinath P, et al. X-ray diffraction investigation of nano-crystalline magnesium oxide (MgO) nanoparticles. J Appl Crystallogr. 2010;43(1):159–163.
  • Ghosh S, Patil S, Ahire M, et al. Fourier transform infrared spectroscopy analysis of magnesium oxide nanoparticles. Curr Sci. 2011;100(2):173–177.
  • Shaikh SM, Shyama SK, Prakash V, et al. Absorption, LD50 and effects of CoO, MgO and PbO nanoparticles on mice “Mus musculus. IOSR J Environ Sci, ToxicolFood Technol. 2015;9(2):32–38.
  • Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxidase in animal tissue by thiobarbituric acid reaction. Anal Biochem. 1979;95(2):351–358. doi: 10.1016/0003-2697(79)90738-3.
  • Misra HP, Fridovich I. The role of superoxide anions in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem. 1972;247(10):3170–3175. doi: 10.1016/S0021-9258(19)45228-9.
  • Aebi H. Catalase in vitro. Methods enzymol. 1984;105:121–126. doi: 10.1016/s0076-6879(84)05016-3.
  • Lawrence RA, Burk RF. Glutathione peroxidase activity in selenium-deficient rat liver. Biochem Biophys Res Commun. 1976;71(4):952–958. doi: 10.1016/0006-291x(76)90747-6.
  • Bancroft JD, Layton C.. Ch. 10 and 11 The hematoxylin and eosin. In: Suvarna, S.K., Layton, C. and Bancroft, J.D., edsitors. Theory & practice of histological techniques. 7th Edition, Philadelphia: Churchill Livingstone of El Sevier; 2013, 172–214
  • Mehraein F, Negahdar F. Morphometric evaluation of seminiferous tubules in aged mice testes after melatonin administration. Cell J. 2011;13(1):1–4.
  • Myers M, Britt KL, Wreford NGM, et al. Methods for quantifying follicular numbers within the mouse ovary. Reproduction. 2004;127(5):569–580. doi: 10.1530/rep.1.00095.
  • Rodríguez-Hernández AP, Vega-Jiménez AL, Vázquez-Olmos AR, et al. Antibacterial properties in vitro of magnesium oxide nanoparticles for dental applications. Nanomaterials. 2023;13(3):502. doi: 10.3390/nano13030502.
  • Naguib GH, Abd El-Aziz GS, Mously HA, et al. Assessment of the dose-dependent biochemical and cytotoxicity of zein-coated MgO nanowires in male and female albino rats. Ann Med. 2021;53(1):1850–1862. doi: 10.1080/07853890.2021.1991587.
  • Noori AJ, Kareem FA. The effect of magnesium oxide nanoparticles on the antibacterial and antibiofilm properties of glass-ionomer cement. Heliyon. 2019;5(10):e02568. doi: 10.1016/j.heliyon.2019.e02568.
  • Ren L, Zhang J, Zou Y, et al. Silica nanoparticles induce reversible damage of spermatogenic cells via RIPK1 signal pathways in C57 mice. Int J Nanomedicine. 2016;11:2251–2264. doi: 10.2147/IJN.S102268.
  • Hashem AM, Al-Mukhtar S, Ibrahim RH, et al. Anatomy & Physiology of the Reproductive System. https://www.researchgate.net/publication/355475196., October 2021
  • Gelli K, Porika M, Anreddy R. Assessment of pulmonary toxicity of MgO nanoparticles in rats. Environ Toxicol. 2015;30(3):308–314. doi: 10.1002/tox.21908.
  • Mangalampalli B, Dumala N, Perumalla Venkata R, et al. Genotoxicity, biochemical, and biodistribution studies of magnesium oxide nano and microparticles in albino wistar rats after 28-day repeated oral exposure. Environ Toxicol. 2018;33(4):396–410. doi: 10.1002/tox.22526.
  • Braakhuis HM, Park MVDZ, Gosens I, et al. Physicochemical characteristics of nanomaterials that affect pulmonary inflammation. Part Fibre Toxicol. 2014;11(1):18. doi: 10.1186/1743-8977-11-18.
  • Almontasser A, Parveen A, A Azam A. Synthesis, characterization and antibacterial activity of magnesium oxide (MgO) nanoparticles. IOP Conf Ser: mater Sci Eng. 2019;577(1):012051. doi: 10.1088/1757-899X/577/1/012051.
  • Trbojevich RA, Torres AM. Biological synthesis, pharmacokinetics, and toxicity of different metal nanoparticles. Metal Nanoparticles in Pharma. New York: Springer; 2017. p. 451–468.
  • Abdallah Y, Ogunyemi SO, Abdelazez A, et al. The green synthesis of MgO nano-flowers using rosmarinus officinalis L. (rosemary) and the antibacterial activities against Xanthomonas oryzae pv. oryzae. Biomed Res Int. 2019;2019:5620989. doi: 10.1155/2019/5620989.
  • Yah CS, Simate GS, Iyuke SE. Nanoparticles toxicity and their routes of exposures. Pak J Pharm Sci. 2012;25(2):477–491.
  • Geraets L, Oomen AG, Krystek P, et al. Tissue distribution and elimination after oral and intravenous administration of different titanium dioxide nanoparticles in rats. Part Fibre Toxicol. 2014;11(1):30. doi: 10.1186/1743-8977-11-30.
  • Hadrup N, Lam HR. Oral toxicity of silver ions, silver nanoparticles and colloidal silver–a review. Regul Toxicol Pharmacol. 2014;68(1):1–7. doi: 10.1016/j.yrtph.2013.11.002.
  • Zhou Q, Yue Z, Li Q, et al. Exposure to PbSe nanoparticles and male reproductive damage in a rat model. Environ Sci Technol. 2019;53(22):13408–13416. doi: 10.1021/acs.est.9b03581.
  • Younus AI, Yousef MI, Kamel MA, et al. Changes in semen characteristics and sex hormones of rats treated with iron oxide nanoparticles, silver nanoparticles and their mixture. GSC Biol Pharm Sci. 2020;12(02):229–237.
  • Gao G, Ze Y, Li B, et al. Ovarian dysfunction and gene-expressed characteristics of female mice caused by long-term exposure to titanium dioxide nanoparticles. J Hazard Mater. 2012;243:19–27. doi: 10.1016/j.jhazmat.2012.08.049.
  • Asadi N, Bahmani M, Kheradmand A, et al. The impact of oxidative stress on testicular function and the role of antioxidants in improving it: a review. J Clin Diagn Res. 2017;11(5):IE01–IE05.
  • Qassim HA, Luaibi N. Study of the hormonal and histological efects of silver nanoparticles on thyroid, ovary and mammary glands in female rats. Reasearch. 2017;118.
  • Asadi F, Sadeghzadeh M, Jalilvand A, et al. Effect of molybdenum trioxide nanoparticles on ovary function in female rats. J Adv Med Biomed Res. 2019;27(121):48–53. doi: 10.30699/jambs.27.121.48.
  • Habas K, Demir E, Guo C, et al. Toxicity mechanisms of nanoparticles in the male reproductive system. Drug Metab Rev. 2021;53(4):604–617. doi: 10.1080/03602532.2021.1917597.
  • Gao G, Ze Y, Zhao X, et al. Titanium dioxide nanoparticle-induced testicular damage, spermatogenesis suppression, and gene expression alterations in male mice. J Hazard Mater. 2013;258-259:133–143. doi: 10.1016/j.jhazmat.2013.04.046.
  • Manke A, Wang L, Rojanasakul Y. Mechanisms of nanoparticle-induced oxidative stress and toxicity. Biomed Res Int. 2013;2013:942916–942915. doi: 10.1155/2013/942916.
  • Muoth C, Aengenheister L, Kucki M, et al. Nanoparticle transport across the placental barrier: pushing the field forward. Nanomedicine. 2016;11(8):941–957. doi: 10.2217/nnm-2015-0012.
  • Kiranmai G, Reddy AR. Antioxidant status in MgO nanoparticle-exposed rats. Toxicol Ind Health. 2013;29(10):897–903. doi: 10.1177/0748233712446723.
  • Mahmoud A, Ezgi O, Merve A, et al. In vitro toxicological assessment of magnesium oxide nanoparticle exposure in several mammalian cell types. Int J Toxicol. 2016;35(4):429–437. doi: 10.1177/1091581816648624.
  • Mekky G, Seeds M, Diab AE, et al. The potential toxic effects of magnesium oxide nanoparticles and valproate on liver tissue. J Biochem Mol Toxicol. 2021;35(3):22676.
  • Asadi F, Fazelipour S, Abbasi RH, et al. Assessment of ovarian follicles and serum reproductive hormones in molybdenum trioxide nanoparticles treated rats. Int J Morphol. 2017;35(4):1473–1481. doi: 10.4067/S0717-95022017000401473.
  • Dutta S, Sengupta P, Slama P, et al. Oxidative stress, testicular inflammatory pathways, and male reproduction. Int J Mol Sci. 2021;22(18):10043. doi: 10.3390/ijms221810043.
  • Agarwal A, Aponte-Mellado A, Premkumar BJ, et al. The effects of oxidative stress on female reproduction: a review. Reprod Biol Endocrinol. 2012;10(1):49. doi: 10.1186/1477-7827-10-49.
  • Kapoor U, Srivastava MK, Srivastava LP. Toxicological impact of technical imidacloprid on ovarian morphology, hormones and antioxidant enzymes in female rats. Food Chem Toxicol. 2011;49(12):3086–3089. doi: 10.1016/j.fct.2011.09.009.
  • Mozaffari Z, Parivar K, Roodbari NH, et al. Histopathological evaluation of the toxic effects of zinc oxide (ZnO) nanoparticles on testicular tissue of NMRI adult mice. Asb. 2015;7:275–291. doi: 10.12988/asb.2015.5425.
  • Alaee S, Ilani M. Effect of titanium dioxide nanoparticles on male and female reproductive systems. JAMSAT. 2017;3(1):3–8. doi: 10.18869/nrip.jamsat.3.1.3.
  • Ahmed SM, Abdelrahman SA, Shalaby SM. Evaluating the effect of silver nanoparticles on testes of adult albino rats (histological, immunohistochemical and biochemical study). J Mol Histol. 2017;48(1):9–27. doi: 10.1007/s10735-016-9701-4.
  • Sundarraj K, Manickam V, Raghunath A, et al. Repeated exposure to iron oxide nanoparticles causes testicular toxicity in mice. Environ Toxicol. 2017;32(2):594–608. doi: 10.1002/tox.22262.
  • Talebi A R, Khorsandi L, Moridian M. The effect of zinc oxide nanoparticles on mouse spermatogenesis. J Assist Reprod Genet. 2013;30(9):1203–1209. doi: 10.1007/s10815-013-0078-y.
  • Sato J, Nasu M, Tsuchitani M. Comparative histopathology of the estrous or menstrual cycle in laboratory animals. J Toxicol Pathol. 2016;29(3):155–162. doi: 10.1293/tox.2016-0021.
  • Di Virgilio A, Reigosa M, Arnal P, et al. Comparative study of the cytotoxic and genotoxic effects of titanium oxide and aluminium oxide nanoparticles in Chinese hamster ovary (CHOK1) cells. J Hazard Mater. 2010;177(1-3):711–718. doi: 10.1016/j.jhazmat.2009.12.089.
  • Elnoury MAH, Azmy OM, Elshal AOI, et al. Study of the effects of silver nanoparticles exposure on the ovary of rats. Life Sci J. 2013;10(2):1887–1894.
  • Yang J, Hu S, Rao M, et al. Copper nanoparticle-induced ovarian injury, follicular atresia, apoptosis, and gene expression alterations in female rats. Int J Nanomedicine. 2017;12:5959–5971. doi: 10.2147/IJN.S139215.
  • Hosseini SM, Moshrefi AH, Amani R, et al. Subchronic effects of different doses of zinc oxide nanoparticle on reproductive organs of female rats: an experimental study. Int J Reprod Biomed. 2019;17(2):107–118. doi: 10.18502/ijrm.v17i2.3988.