1,539
Views
2
CrossRef citations to date
0
Altmetric
Sports Medicine & Musculoskeletal Disorders

The association between morphological characteristics of paraspinal muscle and spinal disorders

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Article: 2258922 | Received 12 Jun 2023, Accepted 07 Sep 2023, Published online: 18 Sep 2023

References

  • Fehlings MG, Tetreault L, Nater A, et al. The aging of the global population: the changing epidemiology of disease and spinal disorders. Neurosurgery. 2015;77 Suppl 4: 1 1–22. doi: 10.1227/NEU.0000000000000953.
  • Brinjikji W, Luetmer PH, Comstock B, et al. Systematic literature review of imaging features of spinal degeneration in asymptomatic populations. AJNR Am J Neuroradiol. 2015;36(4):811–816. doi: 10.3174/ajnr.A4173.
  • Theodore N. Degenerative cervical spondylosis. N Engl J Med. 2020;383(2):159–168. doi: 10.1056/NEJMra2003558.
  • Teraguchi M, Yoshimura N, Hashizume H, et al. Prevalence and distribution of intervertebral disc degeneration over the entire spine in a population-based cohort: the Wakayama spine study. Osteoarthritis Cartilage. 2014;22(1):104–110. doi: 10.1016/j.joca.2013.10.019.
  • Boos N, Weissbach S, Rohrbach H, et al. Classification of age-related changes in lumbar intervertebral discs: 2002 volvo award in basic science. Spine. 2002;27(23):2631–2644. doi: 10.1097/00007632-200212010-00002.
  • Diebo BG, Shah NV, Boachie-Adjei O, et al. Adult spinal deformity. Lancet. 2019;394(10193):160–172. doi: 10.1016/S0140-6736(19)31125-0.
  • Kebaish KM, Neubauer PR, Voros GD, et al. Scoliosis in adults aged forty years and older: prevalence and relationship to age, race, and gender. Spine. 2011;36(9):731–736. doi: 10.1097/BRS.0b013e3181e9f120.
  • Schwab F, Dubey A, Gamez L, et al. Adult scoliosis: prevalence, SF-36, and nutritional parameters in an elderly volunteer population. Spine. 2005;30(9):1082–1085. doi: 10.1097/01.brs.0000160842.43482.cd.
  • Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990-2013: a systematic analysis for the global burden of disease study 2013. Lancet. 2015;386(9995):743–800.
  • Smith E, Hoy DG, Cross M, et al. The global burden of other musculoskeletal disorders: estimates from the global burden of disease 2010 study. Ann Rheum Dis. 2014;73(8):1462–1469. doi: 10.1136/annrheumdis-2013-204680.
  • March L, Smith EU, Hoy DG, et al. Burden of disability due to musculoskeletal (MSK) disorders. Best Pract Res Clin Rheumatol. 2014;28(3):353–366. doi: 10.1016/j.berh.2014.08.002.
  • Hartvigsen J, Hancock MJ, Kongsted A, et al. What low back pain is and why we need to pay attention [J. ]Lancet. 2018;391(10137):2356–2367. doi: 10.1016/S0140-6736(18)30480-X.
  • Clark S, Horton R. Low back pain: a major global challenge. Lancet. 2018;391(10137):2302. doi: 10.1016/S0140-6736(18)30725-6.
  • Germon T, Clifford D, Lee W, et al. Low back pain. Lancet. 2018;392(10164):2547. doi: 10.1016/S0140-6736(18)32220-7.
  • Asher AL, Devin CJ, Archer KR, et al. An analysis from the quality outcomes database, part 2. Predictive model for return to work after elective surgery for lumbar degenerative disease. J Neurosurg Spine. 2017;27(4):370–381. doi: 10.3171/2016.8.SPINE16527.
  • Maher C, Underwood M, Buchbinder R. Non-specific low back pain. Lancet. 2017;389(10070):736–747. doi: 10.1016/S0140-6736(16)30970-9.
  • Buchbinder R, VAN Tulder M, Öberg B, et al. Low back pain: a call for action. Lancet. 2018;391(10137):2384–2388. doi: 10.1016/S0140-6736(18)30488-4.
  • Hoy D, March L, Brooks P, et al. The global burden of low back pain: estimates from the global burden of disease 2010 study. Ann Rheum Dis. 2014;73(6):968–974. doi: 10.1136/annrheumdis-2013-204428.
  • Hoy D, Geere JA, Davatchi F, et al. A time for action: opportunities for preventing the growing burden and disability from musculoskeletal conditions in low- and Middle-income countries. Best Pract Res Clin Rheumatol. 2014;28(3):377–393. doi: 10.1016/j.berh.2014.07.006.
  • Hodges PW, Danneels L. Changes in structure and function of the back muscles in low back pain: different time points, observations, and mechanisms. J Orthop Sports Phys Ther. 2019;49(6):464–476. doi: 10.2519/jospt.2019.8827.
  • Mannion AF, Weber BR, Dvorak J, et al. Fibre type characteristics of the lumbar paraspinal muscles in normal healthy subjects and in patients with low back pain. J Orthop Res. 1997;15(6):881–887. doi: 10.1002/jor.1100150614.
  • Crossman K, Mahon M, Watson PJ, et al. Chronic low back pain-associated paraspinal muscle dysfunction is not the result of a constitutionally determined "adverse" fiber-type composition. Spine (Phila Pa 1976). 2004;29(6):628–634. doi: 10.1097/01.brs.0000115133.97216.ec.
  • Gertken JT, Hunt CH, Chinea NI, et al. Risk of hematoma following needle electromyography of the paraspinal muscles. Muscle Nerve. 2011;44(3):439–440. doi: 10.1002/mus.22138.
  • Ranson CA, Burnett AF, Kerslake R, et al. An investigation into the use of MR imaging to determine the functional cross sectional area of lumbar paraspinal muscles. Eur Spine J. 2006;15(6):764–773. doi: 10.1007/s00586-005-0909-3.
  • Xiao Y, Fortin M, BATTIé MC, et al. Population-averaged MRI atlases for automated image processing and assessments of lumbar paraspinal muscles. Eur Spine J. 2018;27(10):2442–2448. doi: 10.1007/s00586-018-5704-z.
  • Goubert D, DE Pauw R, Meeus M, et al. Lumbar muscle structure and function in chronic versus recurrent low back pain: a cross-sectional study. Spine J. 2017;17(9):1285–1296. doi: 10.1016/j.spinee.2017.04.025.
  • MäKI T, Oura P, Paananen M, et al. Longitudinal analysis of paraspinal muscle cross-sectional area during early adulthood – a 10-year follow-up MRI study. Sci Rep. 2019;9(1):19497. doi: 10.1038/s41598-019-56186-4.
  • Dallaway A, Hattersley J, Diokno M, et al. Age-related degeneration of lumbar muscle morphology in healthy younger versus older men. Aging Male. 2020;23(5):1583–1597. doi: 10.1080/13685538.2021.1878130.
  • Peng X, Li X, Xu Z, et al. Age-related fatty infiltration of lumbar paraspinal muscles: a normative reference database study in 516 chinese females. Quant Imaging Med Surg. 2020;10(8):1590–1601. doi: 10.21037/qims-19-835.
  • Engelke K, Ghasemikaram M, Chaudry O, et al. The effect of ageing on fat infiltration of thigh and paraspinal muscles in men. Aging Clin Exp Res. 2022;34(9):2089–2098. doi: 10.1007/s40520-022-02149-1.
  • Burian E, Franz D, Greve T, et al. Age- and gender-related variations of cervical muscle composition using chemical shift encoding-based water-fat MRI. Eur J Radiol. 2020;125:108904. doi: 10.1016/j.ejrad.2020.108904.
  • Kim H, Lee CK, Yeom JS, et al. Asymmetry of the cross-sectional area of paravertebral and psoas muscle in patients with degenerative scoliosis. Eur Spine J. 2013;22(6):1332–1338. doi: 10.1007/s00586-013-2740-6.
  • Abbas J, Slon V, May H, et al. Paraspinal muscles density: a marker for degenerative lumbar spinal stenosis? BMC Musculoskelet Disord. 2016;17(1):422. doi: 10.1186/s12891-016-1282-6.
  • Fortin M, LAZáRY À, Varga PP, et al. Paraspinal muscle asymmetry and fat infiltration in patients with symptomatic disc herniation. Eur Spine J. 2016;25(5):1452–1459. doi: 10.1007/s00586-016-4503-7.
  • Suzuki K, Hasebe Y, Yamamoto M, et al. Risk factor analysis for fat infiltration in the lumbar paraspinal muscles in patients with lumbar degenerative diseases. Geriatr Orthop Surg Rehabil. 2022;13:21514593211070688. doi: 10.1177/21514593211070688.
  • Shahidi B, Hubbard JC, Gibbons MC, et al. Lumbar multifidus muscle degenerates in individuals with chronic degenerative lumbar spine pathology. J Orthop Res. 2017;35(12):2700–2706. doi: 10.1002/jor.23597.
  • Yuan L, Zeng Y, Chen Z, et al. Degenerative lumbar scoliosis patients with proximal junctional kyphosis have lower muscularity, fatty degeneration at the lumbar area. Eur Spine J. 2021;30(5):1133–1143. doi: 10.1007/s00586-020-06394-8.
  • Wang W, Li W, Chen Z. Risk factors for screw loosening in patients with adult degenerative scoliosis: the importance of paraspinal muscle degeneration. J Orthop Surg Res. 2021;16(1):448. doi: 10.1186/s13018-021-02589-x.
  • Kim HJ, Yang JH, Chang DG, et al. Long-Term influence of paraspinal muscle quantity in adolescent idiopathic scoliosis following deformity correction by posterior approach. J Clin Med. 2021;10(20):4790. doi: 10.3390/jcm10204790.
  • Berry DB, Padwal J, Johnson S, et al. The effect of high-intensity resistance exercise on lumbar musculature in patients with low back pain: a preliminary study. BMC Musculoskelet Disord. 2019;20(1):290. doi: 10.1186/s12891-019-2658-1.
  • Gu Y, Wang C, Hu J, et al. Association between the cervical extensor musculature and the demographic features, symptoms, and sagittal balance in patients with multilevel cervical spondylotic myelopathy. World Neurosurg. 2023;169:e40–e50. doi: 10.1016/j.wneu.2022.10.014.
  • Du Rose A, Breen A, Breen A. Relationships between muscle electrical activity and the control of inter-vertebral motion during a forward bending task. J Electromyogr Kinesiol. 2018;43:48–54. doi: 10.1016/j.jelekin.2018.08.004.
  • Kong MH, Morishita Y, He W, et al. Lumbar segmental mobility according to the grade of the disc, the facet joint, the muscle, and the ligament pathology by using kinetic magnetic resonance imaging. Spine (Phila Pa 1976). 2009;34(23):2537–2544. doi: 10.1097/BRS.0b013e3181b353ea.
  • Creze M, Soubeyrand M, Gagey O. The paraspinal muscle-tendon system: its paradoxical anatomy. PLoS One. 2019;14(4):e0214812. doi: 10.1371/journal.pone.0214812.
  • Anderson JS, Hsu AW, Vasavada AN. Morphology, architecture, and biomechanics of human cervical multifidus. Spine (Phila Pa 1976). 2005;30(4):E86–91. doi: 10.1097/01.brs.0000153700.97830.02.
  • Willard FH, Vleeming A, Schuenke MD, et al. The thoracolumbar fascia: anatomy, function and clinical considerations. J Anat. 2012;221(6):507–536. doi: 10.1111/j.1469-7580.2012.01511.x.
  • Macintosh JE, Valencia F, Bogduk N, et al. The morphology of the human lumbar multifidus. Clin Biomech. 1986;1(4):196–204. doi: 10.1016/0268-0033(86)90146-4.
  • Macintosh JE, Bogduk N. The attachments of the lumbar erector spinae. Spine. 1991;16(7):783–792. doi: 10.1097/00007632-199107000-00017.
  • Daggfeldt K, Huang QM, Thorstensson A. The visible human anatomy of the lumbar erector spinae. Spine. 2000;25(21):2719–2725. doi: 10.1097/00007632-200011010-00002.
  • Agten A, Stevens S, Verbrugghe J, et al. Biopsy samples from the erector spinae of persons with nonspecific chronic low back pain display a decrease in glycolytic muscle fibers. Spine J. 2020;20(2):199–206. doi: 10.1016/j.spinee.2019.09.023.
  • Padwal J, Berry DB, Hubbard JC, et al. Regional differences between superficial and deep lumbar multifidus in patients with chronic lumbar spine pathology. BMC Musculoskelet Disord. 2020;21(1):764. doi: 10.1186/s12891-020-03791-4.
  • Purushotham S, Stephenson RS, Sanderson A, et al. Microscopic changes in the spinal extensor musculature in people with chronic spinal pain: a systematic review. Spine J. 2022;22(7):1205–1221. doi: 10.1016/j.spinee.2022.01.023.
  • Zhu DC, Lin JH, Xu JJ, et al. An assessment of morphological and pathological changes in paravertebral muscle degeneration using imaging and histological analysis: a cross-sectional study. BMC Musculoskelet Disord. 2021;22(1):854. doi: 10.1186/s12891-021-04734-3.
  • Zhi-Jun H, Wen-BIN X, Shuai C, et al. Accuracy of magnetic resonance imaging signal intensity ratio measurements in the evaluation of multifidus muscle injury and atrophy relative to that of histological examinations. Spine. 2014;39(10):E623–9. doi: 10.1097/BRS.0000000000000286.
  • Fortin M, Gibbons LE, Videman T, et al. Do variations in paraspinal muscle morphology and composition predict low back pain in men?. Scand J Med Sci Sports. 2015;25(6):880–887. doi: 10.1111/sms.12301.
  • Kalichman L, Carmeli E, Been E. The association between imaging parameters of the paraspinal muscles, spinal degeneration, and low back pain. Biomed Res Int. 2017;2017:2562957–2562914. doi: 10.1155/2017/2562957.
  • Mandelli F, NüESCH C, Zhang Y, et al. Assessing fatty infiltration of paraspinal muscles in patients with lumbar spinal stenosis: goutallier classification and quantitative MRI measurements. Front Neurol. 2021;12:656487. doi: 10.3389/fneur.2021.656487.
  • Qu H, Yu LJ, Wu JT, et al. Spine system changes in soldiers after load carriage training in a Plateau environment: a prediction model research. Mil Med Res. 2020;7(1):63. doi: 10.1186/s40779-020-00293-1.
  • Kader DF, Wardlaw D, Smith FW. Correlation between the MRI changes in the lumbar multifidus muscles and leg pain. Clin Radiol. 2000;55(2):145–149. doi: 10.1053/crad.1999.0340.
  • Parkkola R, RYTöKOSKI U, Kormano M. Magnetic resonance imaging of the discs and trunk muscles in patients with chronic low back pain and healthy control subjects. Spine. 1993;18(7):830–836. doi: 10.1097/00007632-199306000-00004.
  • Ding JZ, Kong C, Li XY, et al. Different degeneration patterns of paraspinal muscles in degenerative lumbar diseases: a MRI analysis of 154 patients. Eur Spine J. 2022;31(3):764–773. doi: 10.1007/s00586-021-07053-2.
  • Tang Y, Yang S, Chen C, et al. Assessment of the association between paraspinal muscle degeneration and quality of life in patients with degenerative lumbar scoliosis. Exp Ther Med. 2020;20(1):505–511. doi: 10.3892/etm.2020.8682.
  • Berry DB, Shahidi B, RODRíGUEZ-Soto AE, et al. Lumbar muscle structure predicts operational postures in Active-Duty marines. J Orthop Sports Phys Ther. 2018;48(8):613–621. doi: 10.2519/jospt.2018.7865.
  • Dahlqvist JR, Vissing CR, Hedermann G, et al. Fat replacement of paraspinal muscles with aging in healthy adults. Med Sci Sports Exerc. 2017;49(3):595–601. doi: 10.1249/MSS.0000000000001119.
  • Dixon WT. Simple proton spectroscopic imaging. Radiology. 1984;153(1):189–194. doi: 10.1148/radiology.153.1.6089263.
  • Buxton RB, Wismer GL, Brady TJ, et al. Quantitative proton chemical-shift imaging. Magn Reson Med. 1986;3(6):881–900. doi: 10.1002/mrm.1910030609.
  • Sollmann N, Bonnheim NB, Joseph GB, et al. Paraspinal muscle in chronic low back pain: comparison between standard parameters and chemical shift Encoding-Based Water-Fat MRI. J Magn Reson Imaging. 2022;56(5):1600–1608. doi: 10.1002/jmri.28145.
  • Goutallier D, Postel J-M, Bernageau J, et al. Fatty muscle degeneration in cuff ruptures: pre- and postoperative evaluation by CT. Clin Orthop Relat Res. 1994;304(304):78–83.
  • Kamiya N, Li J, Kume M, et al. Fully automatic segmentation of paraspinal muscles from 3D torso CT images via multi-scale iterative random Forest classifications. Int J Comput Assist Radiol Surg. 2018;13(11):1697–1706. doi: 10.1007/s11548-018-1852-1.
  • Wesselink EO, Elliott JM, Coppieters MW, et al. Convolutional neural networks for the automatic segmentation of lumbar paraspinal muscles in people with low back pain. Sci Rep. 2022;12(1):13485. doi: 10.1038/s41598-022-16710-5.
  • Weber KA, Smith AC, Wasielewski M, et al. Deep learning convolutional neural networks for the automatic quantification of muscle fat infiltration following whiplash injury. Sci Rep. 2019;9(1):7973. doi: 10.1038/s41598-019-44416-8.
  • Barnard R, Tan J, Roller B, et al. Machine learning for automatic paraspinous muscle area and attenuation measures on low-dose chest CT scans. Acad Radiol. 2019;26(12):1686–1694. doi: 10.1016/j.acra.2019.06.017.
  • BELAVý DL, Armbrecht G, Felsenberg D. Real-time ultrasound measures of lumbar erector spinae and multifidus: reliability and comparison to magnetic resonance imaging. Physiol Meas. 2015;36(11):2285–2299. doi: 10.1088/0967-3334/36/11/2285.
  • Jolivet E, Daguet E, Pomero V, et al. Volumic patient-specific reconstruction of muscular system based on a reduced dataset of medical images. Comput Methods Biomech Biomed Engin. 2008;11(3):281–290. doi: 10.1080/10255840801959479.
  • BOISSIèRE L, Moal B, Gille O, et al. Lumbar spinal muscles and spinal canal study by MRI three-dimensional reconstruction in adult lumbar spinal stenosis. Orthop Traumatol Surg Res. 2017;103(2):279–283. doi: 10.1016/j.otsr.2016.10.025.
  • Lee SY, Kim DH, Park SJ, et al. Novel lateral whole-body dual-energy X-ray absorptiometry of lumbar paraspinal muscle mass: results from the SarcoSpine study. J Cachexia Sarcopenia Muscle. 2021;12(4):913–920. doi: 10.1002/jcsm.12721.
  • Zi Y, Zhang B, Liu L, et al. Fat content in lumbar paravertebral muscles: quantitative and qualitative analysis using dual-energy CT in correlation to MR imaging. Eur J Radiol. 2022;148:110150. doi: 10.1016/j.ejrad.2021.110150.
  • Molwitz I, Leiderer M, Mcdonough R, et al. Skeletal muscle fat quantification by dual-energy computed tomography in comparison with 3T MR imaging. Eur Radiol. 2021;31(10):7529–7539. doi: 10.1007/s00330-021-07820-1.
  • Huang CWC, Tseng IJ, Yang SW, et al. Lumbar muscle volume in postmenopausal women with osteoporotic compression fractures: quantitative measurement using MRI. Eur Radiol. 2019;29(9):4999–5006. doi: 10.1007/s00330-019-06034-w.
  • Kim M, Chon J, Lee SA, et al. Does unilateral lumbosacral radiculopathy affect the association between lumbar spinal muscle morphometry and bone mineral density?. Int J Environ Res Public Health. 2021;18(24):13155. doi: 10.3390/ijerph182413155.
  • Abbott R, Pedler A, Sterling M, et al. The geography of fatty infiltrates within the cervical multifidus and semispinalis cervicis in individuals with chronic whiplash-associated disorders. J Orthop Sports Phys Ther. 2015;45(4):281–288. doi: 10.2519/jospt.2015.5719.
  • Smith AC, Albin SR, Abbott R, et al. Confirming the geography of fatty infiltration in the deep cervical extensor muscles in whiplash recovery. Sci Rep. 2020;10(1):11471. doi: 10.1038/s41598-020-68452-x.
  • Karlsson A, Leinhard OD, Åslund U, et al. An investigation of fat infiltration of the multifidus muscle in patients with severe neck symptoms associated with chronic Whiplash-Associated disorder. J Orthop Sports Phys Ther. 2016;46(10):886–893. doi: 10.2519/jospt.2016.6553.
  • Abbott R, Peolsson A, West J, et al. The qualitative grading of muscle fat infiltration in whiplash using fat and water magnetic resonance imaging. Spine J. 2018;18(5):717–725. doi: 10.1016/j.spinee.2017.08.233.
  • Elliott JM, Courtney DM, Rademaker A, et al. The rapid and progressive degeneration of the cervical multifidus in whiplash: an MRI study of fatty infiltration. Spine. 2015;40(12):E694–700. doi: 10.1097/BRS.0000000000000891.
  • Rahnama L, Peterson G, Kazemnejad A, et al. Alterations in the mechanical response of deep dorsal neck muscles in individuals experiencing Whiplash-Associated disorders compared to healthy controls: an ultrasound study. Am J Phys Med Rehabil. 2018;97(2):75–82. doi: 10.1097/PHM.0000000000000845.
  • Valera-Calero JA, FERNáNDEZ-DE-LAS-PEñAS C, Cleland JA, et al. Ultrasound assessment of deep cervical extensors morphology and quality in populations with whiplash associated disorders: an intra- and inter-examiner reliability study. Musculoskelet Sci Pract. 2022;59:102538. doi: 10.1016/j.msksp.2022.102538.
  • Snodgrass SJ, Stanwell P, Weber KA, et al. Greater muscle volume and muscle fat infiltrate in the deep cervical spine extensor muscles (multifidus with semispinalis cervicis) in individuals with chronic idiopathic neck pain compared to age and sex-matched asymptomatic controls: a cross-sectional study. BMC Musculoskelet Disord. 2022;23(1):973. doi: 10.1186/s12891-022-05924-3.
  • Thakar S, Mohan D, Furtado SV, et al. Paraspinal muscle morphometry in cervical spondylotic myelopathy and its implications in clinicoradiological outcomes following Central corpectomy: clinical article. J Neurosurg Spine. 2014;21(2):223–230. doi: 10.3171/2014.4.SPINE13627.
  • Hou X, Lu S, Wang B, et al. Morphologic characteristics of the deep cervical paraspinal muscles in patients with Single-Level cervical spondylotic myelopathy. World Neurosurg. 2020;134:e166–e71. doi: 10.1016/j.wneu.2019.09.162.
  • Tamai K, Grisdela P, JR., Romanu J, et al. The impact of cervical spinal muscle degeneration on cervical sagittal balance and spinal degenerative disorders. Clin Spine Surg. 2019;32(4):E206–e13. doi: 10.1097/BSD.0000000000000789.
  • Yuksel Y, Ergun T, Torun E. The relationship between the flexor and extensor muscle areas and the presence and degree of intervertebral disc degeneration in the cervical region. Medicine (Baltimore). 2022;101(42):e31132. doi: 10.1097/MD.0000000000031132.
  • Fortin M, Dobrescu O, Courtemanche M, et al. Association between paraspinal muscle morphology, clinical symptoms, and functional status in patients with degenerative cervical myelopathy. Spine (Phila Pa 1976). 2017;42(4):232–239. doi: 10.1097/BRS.0000000000001704.
  • Cloney M, Smith AC, Coffey T, et al. Fatty infiltration of the cervical multifidus musculature and their clinical correlates in spondylotic myelopathy. J Clin Neurosci. 2018;57:208–213. doi: 10.1016/j.jocn.2018.03.028.
  • Doi T, Ohtomo N, Oguchi F, et al. Association between deep posterior cervical paraspinal muscle morphology and clinical features in patients with cervical ossification of the posterior longitudinal ligament. Global Spine J. 2023;13(1):8–16. doi: 10.1177/2192568221989655.
  • Fortin M, Wilk N, Dobrescu O, et al. Relationship between cervical muscle morphology evaluated by MRI, cervical muscle strength and functional outcomes in patients with degenerative cervical myelopathy. Musculoskelet Sci Pract. 2018;38:1–7. doi: 10.1016/j.msksp.2018.07.003.
  • Mitsutake T, Sakamoto M, Chyuda Y, et al. Greater cervical muscle fat infiltration evaluated by magnetic resonance imaging is associated with poor postural stability in patients with cervical spondylotic radiculopathy. Spine. 2016;41(1):E8–14. doi: 10.1097/BRS.0000000000001196.
  • Yun Y, Lee EJ, Kim Y, et al. Asymmetric atrophy of cervical multifidus muscles in patients with chronic unilateral cervical radiculopathy. Medicine. 2019;98(32):e16041. doi: 10.1097/MD.0000000000016041.
  • Ekşi M, Özcan-Ekşi EE, Orhun Ö, et al. Proposal for a new scoring system for spinal degeneration: mo-Fi-Disc. Clin Neurol Neurosurg. 2020;198:106120. doi: 10.1016/j.clineuro.2020.106120.
  • Huang Z, Bai Z, Yan J, et al. Association between muscle morphology changes, cervical spine degeneration, and clinical features in patients with chronic nonspecific neck pain: a magnetic resonance imaging analysis. World Neurosurg. 2022;159:e273–e84. doi: 10.1016/j.wneu.2021.12.041.
  • Yeung K H, Man GCW, Shi L, et al. Magnetic resonance Imaging-Based morphological change of paraspinal muscles in girls with adolescent idiopathic scoliosis. Spine. 2019;44(19):1356–1363. doi: 10.1097/BRS.0000000000003078.
  • Wajchenberg M, Astur N, Fernandes EA, et al. Assessment of fatty infiltration of the multifidus muscle in patients with adolescent idiopathic scoliosis through evaluation by magnetic resonance imaging compared with histological analysis: a diagnostic accuracy study. J Pediatr Orthop B. 2019;28(4):362–367. doi: 10.1097/BPB.0000000000000578.
  • Zapata KA, Wang-Price SS, Sucato DJ, et al. Ultrasonographic measurements of paraspinal muscle thickness in adolescent idiopathic scoliosis: a comparison and reliability study. Pediatr Phys Ther. 2015;27(2):119–125. doi: 10.1097/PEP.0000000000000131.
  • Shahidi B, Yoo A, Farnsworth C, et al. Paraspinal muscle morphology and composition in adolescent idiopathic scoliosis: a histological analysis. JOR Spine. 2021;4(3):e1169. doi: 10.1002/jsp2.1169.
  • Wajchenberg M, Martins DE, Luciano RP, et al. Histochemical analysis of paraspinal rotator muscles from patients with adolescent idiopathic scoliosis: a cross-sectional study. Medicine. 2015;94(8):e598. doi: 10.1097/MD.0000000000000598.
  • Stetkarova I, Zamecnik J, Bocek V, et al. Electrophysiological and histological changes of paraspinal muscles in adolescent idiopathic scoliosis. Eur Spine J. 2016;25(10):3146–3153. doi: 10.1007/s00586-016-4628-8.
  • Yagi M, Hosogane N, Watanabe K, et al. The paravertebral muscle and psoas for the maintenance of global spinal alignment in patient with degenerative lumbar scoliosis. Spine J. 2016;16(4):451–458. doi: 10.1016/j.spinee.2015.07.001.
  • Xia W, Fu H, Zhu Z, et al. Association between back muscle degeneration and spinal-pelvic parameters in patients with degenerative spinal kyphosis. BMC Musculoskelet Disord. 2019;20(1):454. doi: 10.1186/s12891-019-2837-0.
  • Xie D, Zhang J, Ding W, et al. Abnormal change of paravertebral muscle in adult degenerative scoliosis and its association with bony structural parameters. Eur Spine J. 2019;28(7):1626–1637. doi: 10.1007/s00586-019-05958-7.
  • Sun XY, Kong C, Zhang TT, et al. Correlation between multifidus muscle atrophy, spinopelvic parameters, and severity of deformity in patients with adult degenerative scoliosis: the parallelogram effect of LMA on the diagonal through the apical vertebra. J Orthop Surg Res. 2019;14(1):276. doi: 10.1186/s13018-019-1323-6.
  • Wang G, Karki SB, Xu S, et al. Quantitative MRI and X-ray analysis of disc degeneration and paraspinal muscle changes in degenerative spondylolisthesis. J Back Musculoskelet Rehabil. 2015;28(2):277–285. doi: 10.3233/BMR-140515.
  • Wang Z, Tian Y, Li C, et al. Radiographic risk factors for degenerative lumbar spondylolisthesis: a comparison with healthy control subjects. Front Surg. 2022;9:956696. doi: 10.3389/fsurg.2022.956696.
  • Lee ET, Lee SA, Soh Y, et al. Association of lumbar paraspinal muscle morphometry with degenerative spondylolisthesis. Int J Environ Res Public Health. 2021;18(8):4037. doi: 10.3390/ijerph18084037.
  • Li C, Wang L, Wang Z, et al. Radiological changes of paraspinal muscles: a comparative study of patients with isthmic spondylolisthesis, patients with degenerative lumbar spondylolisthesis, and healthy subjects. J Pain Res. 2022;15:3563–3573. doi: 10.2147/JPR.S376575.
  • Park JH, Kim KW, Youn Y, et al. Association of MRI-defined lumbar paraspinal muscle mass and slip percentage in degenerative and isthmic spondylolisthesis: a multicenter, retrospective, observational study. Medicine. 2019;98(49):e18157. doi: 10.1097/MD.0000000000018157.
  • Wagner SC, Sebastian AS, Mckenzie JC, et al. Severe lumbar disability is associated with decreased psoas cross-sectional area in degenerative spondylolisthesis. Global Spine J. 2018;8(7):716–721. doi: 10.1177/2192568218765399.
  • Wang W, Guo Y, Li W, et al. The difference of paraspinal muscle between patients with lumbar spinal stenosis and normal Middle-aged and elderly people, studying by propensity score matching. Front Endocrinol (Lausanne). 2022;13:1080033. doi: 10.3389/fendo.2022.1080033.
  • Jiang J, Wang H, Wang L, et al. Multifidus degeneration, a new risk factor for lumbar spinal stenosis: a Case-Control study. World Neurosurg. 2017;99:226–231. doi: 10.1016/j.wneu.2016.11.142.
  • Sun D, Wang Z, Mou J, et al. Characteristics of paraspinal muscle degeneration in degenerative diseases of the lumbar spine at different ages. Clin Neurol Neurosurg. 2022;223:107484. doi: 10.1016/j.clineuro.2022.107484.
  • Fortin M, LAZáRY À, Varga PP, et al. Association between paraspinal muscle morphology, clinical symptoms and functional status in patients with lumbar spinal stenosis. Eur Spine J. 2017;26(10):2543–2551. doi: 10.1007/s00586-017-5228-y.
  • Getzmann JM, Ashouri H, Burgstaller JM, et al. The effect of paraspinal fatty muscle infiltration and cumulative lumbar spine degeneration on the outcome of patients with lumbar spinal canal stenosis: analysis of the lumbar stenosis outcome study (LSOS) data. Spine. 2023;48(2):97–106. doi: 10.1097/BRS.0000000000004477.
  • Liu Y, Liu Y, Hai Y, et al. Lumbar lordosis reduction and disc bulge may correlate with multifidus muscle fatty infiltration in patients with single-segment degenerative lumbar spinal stenosis. Clin Neurol Neurosurg. 2020;189:105629. doi: 10.1016/j.clineuro.2019.105629.
  • Liu Y, Liu Y, Hai Y, et al. Multifidus muscle fatty infiltration as an index of dysfunction in patients with single-segment degenerative lumbar spinal stenosis: a case-control study based on propensity score matching. J Clin Neurosci. 2020;75:139–148. doi: 10.1016/j.jocn.2020.03.001.
  • Chen YY, Pao JL, Liaw CK, et al. Image changes of paraspinal muscles and clinical correlations in patients with unilateral lumbar spinal stenosis. Eur Spine J. 2014;23(5):999–1006. doi: 10.1007/s00586-013-3148-z.
  • Xia G, Li X, Shang Y, et al. Correlation between severity of spinal stenosis and multifidus atrophy in degenerative lumbar spinal stenosis. BMC Musculoskelet Disord. 2021;22(1):536. doi: 10.1186/s12891-021-04411-5.
  • Han G, Zou D, Liu Z, et al. Fat infiltration of paraspinal muscles as an independent risk for bone nonunion after posterior lumbar interbody fusion. BMC Musculoskelet Disord. 2022;23(1):232. doi: 10.1186/s12891-022-05178-z.
  • Wang W, Sun Z, Li W, et al. The effect of paraspinal muscle on functional status and recovery in patients with lumbar spinal stenosis. J Orthop Surg Res. 2020;15(1):235. doi: 10.1186/s13018-020-01751-1.
  • Liu Y, Liu Y, Hai Y, et al. Fat infiltration in the multifidus muscle as a predictor of prognosis after decompression and fusion in patients with single-segment degenerative lumbar spinal stenosis: an ambispective cohort study based on propensity score matching. World Neurosurg. 2019;128:e989–e1001. doi: 10.1016/j.wneu.2019.05.055.
  • Han G, Zou D, Li X, et al. Can fat infiltration in the multifidus muscle be a predictor of postoperative symptoms and complications in patients undergoing lumbar fusion for degenerative lumbar spinal stenosis? A case-control study. J Orthop Surg Res. 2022;17(1):289. doi: 10.1186/s13018-022-03186-2.
  • Zhu W, Sun K, Li X, et al. Symptomatic sagittal imbalance and severe degeneration of paraspinal muscle predispose suboptimal outcomes after lumbar short fusion surgery for degenerative lumbar spinal stenosis. World Neurosurg. 2022;164:e741–e8. doi: 10.1016/j.wneu.2022.05.044.
  • Zotti MGT, Boas FV, Clifton T, et al. Does pre-operative magnetic resonance imaging of the lumbar multifidus muscle predict clinical outcomes following lumbar spinal decompression for symptomatic spinal stenosis?. Eur Spine J. 2017;26(10):2589–2597. doi: 10.1007/s00586-017-4986-x.
  • Yazici A, Yerlikaya T. The relationship between the degeneration and asymmetry of the lumbar multifidus and erector spinae muscles in patients with lumbar disc herniation with and without root compression. J Orthop Surg Res. 2022;17(1):541. doi: 10.1186/s13018-022-03444-3.
  • Liu C, Xue J, Liu J, et al. Is there a correlation between upper lumbar disc herniation and multifidus muscle degeneration? A retrospective study of MRI morphology. BMC Musculoskelet Disord. 2021;22(1):92. doi: 10.1186/s12891-021-03970-x.
  • YALTıRıK K, GüDü BO, IŞıK Y, et al. Volumetric muscle measurements indicate significant muscle degeneration in Single-Level disc herniation patients. World Neurosurg. 2018;116:e500–e4. doi: 10.1016/j.wneu.2018.05.019.
  • Ekin EE, Kurtul YıLDıZ H, Mutlu H. Age and sex-based distribution of lumbar multifidus muscle atrophy and coexistence of disc hernia: an MRI study of 2028 patients. Diagn Interv Radiol. 2016;22(3):273–276. doi: 10.5152/dir.2015.15307.
  • Sun D, Liu P, Cheng J, et al. Correlation between intervertebral disc degeneration, paraspinal muscle atrophy, and lumbar facet joints degeneration in patients with lumbar disc herniation. BMC Musculoskelet Disord. 2017;18(1):167. doi: 10.1186/s12891-017-1522-4.
  • Faur C, Patrascu JM, Haragus H, et al. Correlation between multifidus fatty atrophy and lumbar disc degeneration in low back pain. BMC Musculoskelet Disord. 2019;20(1):414. doi: 10.1186/s12891-019-2786-7.
  • Naghdi N, Mohseni-Bandpei MA, Taghipour M, et al. Lumbar multifidus muscle morphology changes in patient with different degrees of lumbar disc herniation: an ultrasonographic study. Medicina. 2021;57(7):699. doi: 10.3390/medicina57070699.
  • Choi TY, Chang MY, Lee SH, et al. Psoas muscle measurement as a predictor of recurrent lumbar disc herniation: a retrospective blind study. Medicine. 2022;101(26):e29778. doi: 10.1097/MD.0000000000029778.
  • Zhong Y, Liu J, Zhou W, et al. Relationship between straight leg-raising test measurements and area of fat infiltration in multifidus muscles in patients with lumbar disc hernation. J Back Musculoskelet Rehabil. 2020;33(1):57–63. doi: 10.3233/BMR-181304.
  • Hodges P, Holm AK, Hansson T, et al. Rapid atrophy of the lumbar multifidus follows experimental disc or nerve root injury. Spine. 2006;31(25):2926–2933. doi: 10.1097/01.brs.0000248453.51165.0b.
  • BATTIé MC, Niemelainen R, Gibbons LE, et al. Is level- and side-specific multifidus asymmetry a marker for lumbar disc pathology? Spine J. 2012;12(10):932–939. doi: 10.1016/j.spinee.2012.08.020.
  • Wan Q, Lin C, Li X, et al. MRI assessment of paraspinal muscles in patients with acute and chronic unilateral low back pain. Br J Radiol. 2015;88(1053):20140546. doi: 10.1259/bjr.20140546.
  • Xiao Y, Fortin M, Ahn J, et al. Statistical morphological analysis reveals characteristic paraspinal muscle asymmetry in unilateral lumbar disc herniation. Sci Rep. 2021;11(1):15576. doi: 10.1038/s41598-021-95149-6.
  • Saragiotto BT, Maher CG, Yamato TP, et al. Motor control exercise for chronic non-specific low-back pain. Cochrane Database Syst Rev. 2016;2016(1):Cd012004. doi: 10.1002/14651858.CD012004.
  • Danneels LA, Vanderstraeten GG, Cambier DC, et al. CT imaging of trunk muscles in chronic low back pain patients and healthy control subjects. Eur Spine J. 2000;9(4):266–272. doi: 10.1007/s005860000190.
  • Mengiardi B, Schmid MR, Boos N, et al. Fat content of lumbar paraspinal muscles in patients with chronic low back pain and in asymptomatic volunteers: quantification with MR spectroscopy. Radiology. 2006;240(3):786–792. doi: 10.1148/radiol.2403050820.
  • Seyedhoseinpoor T, Taghipour M, Dadgoo M, et al. Alteration of lumbar muscle morphology and composition in relation to low back pain: a systematic review and meta-analysis. Spine J. 2022;22(4):660–676. doi: 10.1016/j.spinee.2021.10.018.
  • Ranger TA, Cicuttini FM, Jensen TS, et al. Are the size and composition of the paraspinal muscles associated with low back pain? A systematic review. Spine J. 2017;17(11):1729–1748. doi: 10.1016/j.spinee.2017.07.002.
  • Ogon I, Takebayashi T, Takashima H, et al. Magnetic resonance spectroscopic analysis of multifidus muscles lipid content and association with spinopelvic malalignment in chronic low back pain. Br J Radiol. 2017;90(1073):20160753. doi: 10.1259/bjr.20160753.
  • Takashima H, Takebayashi T, Ogon I, et al. Analysis of intra and extramyocellular lipids in the multifidus muscle in patients with chronic low back pain using MR spectroscopy. Br J Radiol. 2018;91(1083):20170536. doi: 10.1259/bjr.20170536.
  • Cankurtaran D, Yigman ZA, Umay E. Factors associated with paravertebral muscle cross-sectional area in patients with chronic low back pain. Korean J Pain. 2021;34(4):454–462. doi: 10.3344/kjp.2021.34.4.454.
  • Sions JM, Elliott JM, Pohlig RT, et al. Trunk muscle characteristics of the multifidi, erector spinae, psoas, and quadratus lumborum in older adults with and without chronic low back pain. J Orthop Sports Phys Ther. 2017;47(3):173–179. doi: 10.2519/jospt.2017.7002.
  • Xu WB, Chen S, Fan SW, et al. Facet orientation and tropism: associations with asymmetric lumbar paraspinal and psoas muscle parameters in patients with chronic low back pain. J Back Musculoskelet Rehabil. 2016;29(3):581–586. doi: 10.3233/BMR-160661.
  • Zhao X, Liang H, Hua Z, et al. The morphological characteristics of paraspinal muscles in young patients with unilateral neurological symptoms of lumbar disc herniation. BMC Musculoskelet Disord. 2022;23(1):994. doi: 10.1186/s12891-022-05968-5.
  • UçAR İ, KARARTı C, CüCE İ, et al. The relationship between muscle size, obesity, body fat ratio, pain and disability in individuals with and without nonspecific low back pain. Clin Anat. 2021;34(8):1201–1207. doi: 10.1002/ca.23776.
  • Takashima H, Takebayashi T, Ogon I, et al. Evaluation of intramyocellular and extramyocellular lipids in the paraspinal muscle in patients with chronic low back pain using MR spectroscopy: preliminary results. Br J Radiol. 2016;89(1064):20160136. doi: 10.1259/bjr.20160136.
  • Cunningham E, Wedderkopp N, Kjaer P, et al. The relationships between physical activity, lumbar multifidus muscle morphology, and low back pain from childhood to early adulthood: a 12-year longitudinal study. Sci Rep. 2022;12(1):8851. doi: 10.1038/s41598-022-12674-8.
  • Singh R, Yadav SK, Sood S, et al. Magnetic resonance imaging of lumbar trunk parameters in chronic low backache patients and healthy population: a comparative study. Eur Spine J. 2016;25(9):2864–2872. doi: 10.1007/s00586-016-4698-7.
  • Sasaki T, Yoshimura N, Hashizume H, et al. MRI-defined paraspinal muscle morphology in japanese population: the Wakayama spine study. PLoS One. 2017;12(11):e0187765. doi: 10.1371/journal.pone.0187765.
  • Hildebrandt M, Fankhauser G, Meichtry A, et al. Correlation between lumbar dysfunction and fat infiltration in lumbar multifidus muscles in patients with low back pain. BMC Musculoskelet Disord. 2017;18(1):12. doi: 10.1186/s12891-016-1376-1.
  • Teichtahl AJ, Urquhart DM, Wang Y, et al. Physical inactivity is associated with narrower lumbar intervertebral discs, high fat content of paraspinal muscles and low back pain and disability. Arthritis Res Ther. 2015;17(1):114. doi: 10.1186/s13075-015-0629-y.
  • Bouche KG, Vanovermeire O, Stevens VK, et al. Computed tomographic analysis of the quality of trunk muscles in asymptomatic and symptomatic lumbar discectomy patients. BMC Musculoskelet Disord. 2011;12(1):65. doi: 10.1186/1471-2474-12-65.
  • Ghiasi MS, Arjmand N, Shirazi-Adl A, et al. Cross-sectional area of human trunk paraspinal muscles before and after posterior lumbar surgery using magnetic resonance imaging. Eur Spine J. 2016;25(3):774–782. doi: 10.1007/s00586-015-4014-y.
  • Lee D, Cha B, Kim J, et al. Paraspinal muscles atrophy on both sides and at multiple levels after unilateral lumbar partial discectomy. Medicine. 2023;102(3):e32688. doi: 10.1097/MD.0000000000032688.
  • Lee YS, Lee S, Ko MJ, et al. Preservation of deep cervical extensor muscle volume: comparison between conventional Open-Door and muscle preserving laminoplasty approaches in the same patients. World Neurosurg. 2020;141:e514–e23. doi: 10.1016/j.wneu.2020.05.225.
  • He W, He D, Sun Y, et al. Quantitative analysis of paraspinal muscle atrophy after oblique lateral interbody fusion alone vs. combined with percutaneous pedicle screw fixation in patients with spondylolisthesis. BMC Musculoskelet Disord. 2020;21(1):30. doi: 10.1186/s12891-020-3051-9.
  • Lin GX, Ma YM, Xiao YC, et al. The effect of posterior lumbar dynamic fixation and intervertebral fusion on paraspinal muscles. BMC Musculoskelet Disord. 2021;22(1):1049. doi: 10.1186/s12891-021-04943-w.
  • Guo Q, Xu Y, Fang Z, et al. Clinical and radiological outcomes of two modified open-door laminoplasties based on a novel paraspinal approach for treatment of multilevel cervical spondylotic myelopathy. Spine. 2022;47(6):E222–e32. doi: 10.1097/BRS.0000000000004254.
  • Fan SW, Hu ZJ, Fang XQ, et al. Comparison of paraspinal muscle injury in one-level lumbar posterior inter-body fusion: modified minimally invasive and traditional open approaches. Orthop Surg. 2010;2(3):194–200. doi: 10.1111/j.1757-7861.2010.00086.x.
  • Li Y, Chen Y, Liu Y, et al. Changes in paraspinal muscles and facet joints after minimally invasive posterior lumbar interbody fusion using the cortical bone trajectory technique: a prospective study. Pain Res Manag. 2022;2022:2690291–2690297. doi: 10.1155/2022/2690291.
  • Liu X, Yuan S, Tian Y. Modified unilateral laminotomy for bilateral decompression for lumbar spinal stenosis: technical note. Spine. 2013;38(12):E732–7. doi: 10.1097/BRS.0b013e31828fc84c.
  • Yoo JS, Min SH, Yoon SH, et al. Paraspinal muscle changes of unilateral multilevel minimally invasive transforaminal interbody fusion. J Orthop Surg Res. 2014;9(1):130. doi: 10.1186/s13018-014-0130-3.
  • Junhui L, Zhengbao P, Wenbin X, et al. Comparison of pedicle fixation by the wiltse approach and the conventional posterior open approach for thoracolumbar fractures, using MRI, histological and electrophysiological analyses of the multifidus muscle. Eur Spine J. 2017;26(5):1506–1514. doi: 10.1007/s00586-017-5010-1.
  • Ntilikina Y, Bahlau D, Garnon J, et al. Open versus percutaneous instrumentation in thoracolumbar fractures: magnetic resonance imaging comparison of paravertebral muscles after implant removal. J Neurosurg Spine. 2017;27(2):235–241. doi: 10.3171/2017.1.SPINE16886.
  • Choi MK, Kim SB, Park CK, et al. Relation of deep paraspinal muscles’ Cross-Sectional area of the cervical spine and bone union in anterior cervical decompression and fusion: a retrospective study. World Neurosurg. 2016;96:91–100. doi: 10.1016/j.wneu.2016.08.104.
  • Kim JY, Ryu DS, Paik HK, et al. Paraspinal muscle, facet joint, and disc problems: risk factors for adjacent segment degeneration after lumbar fusion. Spine J. 2016;16(7):867–875. doi: 10.1016/j.spinee.2016.03.010.
  • Kumaran Y, Shah A, Katragadda A, et al. Iatrogenic muscle damage in transforaminal lumbar interbody fusion and adjacent segment degeneration: a comparative finite element analysis of open and minimally invasive surgeries. Eur Spine J. 2021;30(9):2622–2630. doi: 10.1007/s00586-021-06909-x.
  • Chen J, Li J, Sheng B, et al. Does preoperative morphology of multifidus influence the surgical outcomes of stand-alone lateral lumbar interbody fusion for lumbar spondylolisthesis?. Clin Neurol Neurosurg. 2022;215:107177. doi: 10.1016/j.clineuro.2022.107177.