2,012
Views
0
CrossRef citations to date
0
Altmetric
Pulmonary Medicine

Climate change, air quality, and respiratory health: a focus on particle deposition in the lungs

, , , , , , , , , & show all
Article: 2264881 | Received 27 Jun 2023, Accepted 19 Sep 2023, Published online: 06 Oct 2023

References

  • Sumasgutner P, Cunningham SJ, Hegemann A, et al. Interactive effects of rising temperatures and urbanisation on birds across different climate zones: a mechanistic perspective. Glob Chang Biol. 2023;29(9):1–8. doi: 10.1111/gcb.16645.
  • Sokhi RS, Singh V, Querol X, et al. A global observational analysis to understand changes in air quality during exceptionally low anthropogenic emission conditions. Environ Int. 2021;157:106818. doi: 10.1016/j.envint.2021.106818.
  • Dutta TK, Phani V. The pervasive impact of global climate change on plant-nematode interaction continuum. Front Plant Sci. 2023;14:1143889. doi: 10.3389/fpls.2023.1143889.
  • Yin H, Liu C, Hu Q, et al. Opposite impact of emission reduction during the COVID-19 lockdown period on the surface concentrations of PM(2.5) and O(3) in Wuhan, China. Environ Pollut. 2021;289:117899. doi: 10.1016/j.envpol.2021.117899.
  • Duan C, Liao H, Wang K, et al. The research hotspots and trends of volatile organic compound emissions from anthropogenic and natural sources: a systematic quantitative review. Environ Res. 2023;218:114964. doi: 10.1016/j.envres.2022.114964.
  • Horton, Daniel E, Diffenbaugh, Noah S, Harshvardhan,. Response of air stagnation frequency to anthropogenically enhanced radiative forcing. Environ Res Lett 2012: 7(4, 044034). doi: 10.1088/1748-9326/7/4/044034.
  • Myhre G, Alterskjær K, Stjern CW, et al. Frequency of extreme precipitation increases extensively with event rareness under global warming. Sci Rep. 2019;9(1):16063. doi: 10.1038/s41598-019-52277-4.
  • Peñuelas J, Staudt M. BVOCs and global change. Trends Plant Sci. 2010;15(3):133–144. doi: 10.1016/j.tplants.2009.12.005.
  • Jaffe DA, O’Neill SM, Larkin NK, et al. Wildfire and prescribed burning impacts on air quality in the United States. J Air Waste Manag Assoc. 2020;70(6):583–615. doi: 10.1080/10962247.2020.1749731.
  • Perera F. Pollution from fossil-fuel combustion is the leading environmental threat to global pediatric health and equity: solutions exist. Int J Environ Res Public Health. 2017;15(1):16.
  • Ebi KL, Ogden NH, Semenza JC, et al. Detecting and attributing health burdens to climate change. Environ Health Perspect. 2017;125(8):085004. doi: 10.1289/EHP1509.
  • Landrigan PJ, Fuller R, Acosta NJR, et al. The lancet commission on pollution and health. Lancet. 2018;391(10119):462–512. doi: 10.1016/S0140-6736(17)32345-0.
  • IPCC. Climate change 2022: impacts, adaptation and vulnerability. Contribution of working group II to the sixth assessment report of the intergovernmental panel on climate change. Cambridge, UK and New York, NY, USA: cambridge University Press; 2022. Report No.: 3056 pp.
  • Uji K. The health impacts of climate change in Asia-Pacific: UN member states. UNDP report, WHO; 2008. https://www.who.int/publications/i/item/the-health-impacts-of-climate-change-in-asia-pacific
  • Lim S, Lam DC, Muttalif AR, et al. Impact of chronic obstructive pulmonary disease (COPD) in the Asia-Pacific region: the EPIC Asia population-based survey. Asia Pac Fam Med. 2015;14(1):4. doi: 10.1186/s12930-015-0020-9.
  • Deng Q, Ou C, Chen J, et al. Particle deposition in tracheobronchial airways of an infant, child and adult. Sci Total Environ. 2018;612:339–346. doi: 10.1016/j.scitotenv.2017.08.240.
  • Kelly FJ, Fussell JC. Air pollution and public health: emerging hazards and improved understanding of risk. Environ Geochem Health. 2015;37(4):631–649. doi: 10.1007/s10653-015-9720-1.
  • Deng Q, Deng L, Miao Y, et al. Particle deposition in the human lung: health implications of particulate matter from different sources. Environ Res. 2019;169:237–245. doi: 10.1016/j.envres.2018.11.014.
  • Orru H, Ebi KL, Forsberg B. The interplay of climate change and air pollution on health. Curr Environ Health Rep. 2017;4(4):504–513. doi: 10.1007/s40572-017-0168-6.
  • Jacob DJ, Winner DA. Effect of climate change on air quality. Atmos Environ. 2009;43(1):51–63. doi: 10.1016/j.atmosenv.2008.09.051.
  • De Sario M, Katsouyanni K, Michelozzi P. Climate change, extreme weather events, air pollution and respiratory health in Europe. Eur Respir J. 2013;42(3):826–843. doi: 10.1183/09031936.00074712.
  • Cleland SE, Wyatt LH, Wei L, et al. Short-term exposure to wildfire smoke and PM2.5 and cognitive performance in a brain-training game: a longitudinal study of U.S. Adults. Environ Health Perspect. 2022;130(6):67005. doi: 10.1289/EHP10498.
  • Srivastava D, Vu TV, Tong S, et al. Formation of secondary organic aerosols from anthropogenic precursors in laboratory studies. NPJ Clim Atmos Sci. 2022;5(1):22. doi: 10.1038/s41612-022-00238-6.
  • Ebi KL, McGregor G. Climate change, tropospheric ozone and particulate matter, and health impacts. Environ Health Perspect. 2008;116(11):1449–1455. doi: 10.1289/ehp.11463.
  • Nguyen D-H, Lin C, Vu C-T, et al. Tropospheric ozone and NOx: a review of worldwide variation and meteorological influences. Environmental Technology & Innovation. 2022;28:102809. doi: 10.1016/j.eti.2022.102809.
  • Peel JL, Haeuber R, Garcia V, et al. Impact of nitrogen and climate change interactions on ambient air pollution and human health. Biogeochemistry. 2013;114(1-3):121–134. doi: 10.1007/s10533-012-9782-4.
  • Darquenne C. Aerosol deposition in health and disease. J Aerosol Med Pulm Drug Deliv. 2012;25(3):140–147. doi: 10.1089/jamp.2011.0916.
  • Hassan MS, Lau RW. Effect of particle shape on dry particle inhalation: study of flowability, aerosolization, and deposition properties. AAPS PharmSciTech. 2009;10(4):1252–1262. doi: 10.1208/s12249-009-9313-3.
  • Tsuda A, Henry FS, Butler JP. Particle transport and deposition: basic physics of particle kinetics. Compr Physiol. 2013;3(4):1437–1471. doi: 10.1002/cphy.c100085.
  • Fröhlich E, Mercuri A, Wu S, et al. Measurements of deposition, lung surface area and lung fluid for simulation of inhaled compounds. Front Pharmacol. 2016;7:181. doi: 10.3389/fphar.2016.00181.
  • Cao J, Situ S, Hao Y, et al. Enhanced summertime ozone and SOA from biogenic volatile organic compound (BVOC) emissions due to vegetation biomass variability during 1981–2018 in China. Atmos Chem Phys. 2022;22(4):2351–2364. doi: 10.5194/acp-22-2351-2022.
  • Chen H, Huo J, Fu Q, et al. Impact of quarantine measures on chemical compositions of PM(2.5) during the COVID-19 epidemic in Shanghai, China. Sci Total Environ. 2020;743:140758. doi: 10.1016/j.scitotenv.2020.140758.
  • Villani P, Sellegri K, Monier M, et al. Influence of semi-volatile species on particle hygroscopic growth. Atmos Environ. 2013;79:129–137. doi: 10.1016/j.atmosenv.2013.05.069.
  • Xu W, Li Q, Shang J, et al. Heterogeneous oxidation of SO2 by O3-aged black carbon and its dithiothreitol oxidative potential. J Environ Sci (China). 2015;36:56–62. doi: 10.1016/j.jes.2015.02.014.
  • Stevens R, Ryjkov A, Majdzadeh M, et al. An improved representation of aerosol mixing state for air quality–weather interactions. Atmos Chem Phys. 2022;22(20):13527–13549. doi: 10.5194/acp-22-13527-2022.
  • Ou C, Hang J, Deng Q. Particle deposition in human lung airways: effects of airflow, particle size, and mechanisms. Aerosol Air Qual Res. 2020;20(12):2846–2858. doi: 10.4209/aaqr.2020.02.0067.
  • Darquenne C. Deposition mechanisms. J Aerosol Med Pulm Drug Deliv. 2020;33(4):181–185. doi: 10.1089/jamp.2020.29029.cd.
  • Ebi KL, Vanos J, Baldwin JW, et al. Extreme weather and climate change: population health and health system implications. Annu Rev Public Health. 2021;42(1):293–315. doi: 10.1146/annurev-publhealth-012420-105026.
  • Zhang Y, Steiner AL. Projected climate-driven changes in pollen emission season length and magnitude over the continental United States. Nat Commun. 2022;13(1):1234. doi: 10.1038/s41467-022-28764-0.
  • Bustamante-Marin XM, Ostrowski LE. Cilia and mucociliary clearance. Cold Spring Harb Perspect Biol. 2017;9(4):a028241. doi: 10.1101/cshperspect.a028241.
  • Möller W, Häussinger K, Ziegler-Heitbrock L, et al. Mucociliary and long-term particle clearance in airways of patients with immotile cilia. Respir Res. 2006;7(1):10. doi: 10.1186/1465-9921-7-10.
  • Hamilton RF, Jr., Thakur SA, Holian A. Silica binding and toxicity in alveolar macrophages. Free Radic Biol Med. 2008;44(7):1246–1258. doi: 10.1016/j.freeradbiomed.2007.12.027.
  • Ural BB, Caron DP, Dogra P, et al. Inhaled particulate accumulation with age impairs immune function and architecture in human lung lymph nodes. Nat Med. 2022;28(12):2622–2632. doi: 10.1038/s41591-022-02073-x.
  • Ma Q. Polarization of immune cells in the pathologic response to inhaled particulates. Front Immunol. 2020;11:1060. doi: 10.3389/fimmu.2020.01060.
  • Lodovici M, Bigagli E. Oxidative stress and air pollution exposure. J Toxicol. 2011;2011:487074–487079. doi: 10.1155/2011/487074.
  • Brook RD, Franklin B, Cascio W, et al. Air pollution and cardiovascular disease. Circulation. 2004;109(21):2655–2671. doi: 10.1161/01.CIR.0000128587.30041.C8.