961
Views
1
CrossRef citations to date
0
Altmetric
Cardiology & Cardiovascular Disorders

Expression profiles and functional analysis of tRNA-derived small RNAs in epicardial adipose tissue of patients with heart failure

, &
Article: 2267981 | Received 13 Apr 2023, Accepted 03 Oct 2023, Published online: 15 Oct 2023

References

  • Tanai E, Frantz S. Pathophysiology of heart failure. Compr Physiol. 2015;6:1–12.
  • Iacobellis G. Epicardial adipose tissue in contemporary cardiology. Nat Rev Cardiol. 2022;19(9):593–606. doi: 10.1038/s41569-022-00679-9.
  • Zhao L, Harrop DL, Ng A, et al. Epicardial adipose tissue is associated with left atrial dysfunction in people without obstructive coronary artery disease or atrial fibrillation. Can J Cardiol. 2018;34(8):1019–1025. doi: 10.1016/j.cjca.2018.05.002.
  • Orellana EA, Siegal E, Gregory RI. TRNA dysregulation and disease. Nat Rev Genet. 2022;23(11):651–664. doi: 10.1038/s41576-022-00501-9.
  • Gu X, Zhang Y, Qin X, et al. Transfer RNA-derived small RNA: an emerging small non-coding RNA with key roles in cancer. Exp Hematol Oncol. 2022;11(1):35. doi: 10.1186/s40164-022-00290-1.
  • Krishna S, Raghavan S, DasGupta R, et al. TRNA-derived fragments (tRFs): establishing their turf in post-transcriptional gene regulation. Cell Mol Life Sci. 2021;78(6):2607–2619. doi: 10.1007/s00018-020-03720-7.
  • Yu X, Xie Y, Zhang S, et al. TRNA-derived fragments: mechanisms underlying their regulation of gene expression and potential applications as therapeutic targets in cancers and virus infections. Theranostics. 2021;11(1):461–469. doi: 10.7150/thno.51963.
  • Wu W, Lee I, Spratt H, et al. TRNA-derived fragments in alzheimer’s disease: implications for new disease biomarkers and neuropathological mechanisms. J Alzheimers Dis. 2021;79(2):793–806. doi: 10.3233/JAD-200917.
  • McDonagh TA, Metra M, Adamo M, et al. 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021;42(36):3599–3726. doi: 10.1093/eurheartj/ehab368.
  • Zhao L, Ma Z, Guo Z, et al. Analysis of long non-coding RNA and mRNA profiles in epicardial adipose tissue of patients with atrial fibrillation. Biomed Pharmacother. 2020;121:109634. doi: 10.1016/j.biopha.2019.109634.
  • Qin C, Feng H, Zhang C, et al. Differential expression profiles and functional prediction of tRNA-derived small RNAs in rats after traumatic spinal cord injury. Front Mol Neurosci. 2019;12:326. doi: 10.3389/fnmol.2019.00326.
  • Liu Y, Cheng X, Li H, et al. Non-coding RNAs as novel regulators of neuroinflammation in alzheimer’s disease. Front Immunol. 2022;13:908076. doi: 10.3389/fimmu.2022.908076.
  • Zhang Y, Ren L, Sun X, et al. Angiogenin mediates paternal inflammation-induced metabolic disorders in offspring through sperm tsRNAs. Nat Commun. 2021;12(1):6673. doi: 10.1038/s41467-021-26909-1.
  • Borek E, Baliga BS, Gehrke CW, et al. High turnover rate of transfer RNA in tumor tissue. Cancer Res. 1977;37(9):3362–3366.
  • Tong L, Zhang W, Qu B, et al. The tRNA-derived fragment-3017A promotes metastasis by inhibiting NELL2 in human gastric cancer. Front Oncol. 2020;10:570916. doi: 10.3389/fonc.2020.570916.
  • Li J, Zhu L, Cheng J, et al. Transfer RNA-derived small RNA: a rising star in oncology. Semin Cancer Biol. 2021;75:29–37. doi: 10.1016/j.semcancer.2021.05.024.
  • Krishna S, Yim DG, Lakshmanan V, et al. Dynamic expression of tRNA-derived small RNAs define cellular states. Embo Rep. 2019;20:e47789.
  • Sharma U, Conine CC, Shea JM, et al. Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals. Science. 2016;351(6271):391–396. doi: 10.1126/science.aad6780.
  • Liu W, Liu Y, Pan Z, et al. Systematic analysis of tRNA-derived small RNAs discloses new therapeutic targets of caloric restriction in myocardial ischemic rats. Front Cell Dev Biol. 2020;8:568116. doi: 10.3389/fcell.2020.568116.
  • Jung P, Seibertz F, Fakuade FE, et al. Increased cytosolic calcium buffering contributes to a cellular arrhythmogenic substrate in iPSC-cardiomyocytes from patients with dilated cardiomyopathy. Basic Res Cardiol. 2022;117(1):5. doi: 10.1007/s00395-022-00912-z.
  • Hutchings DC, Madders GWP, Niort BC, et al. Interaction of background Ca2+ influx, sarcoplasmic reticulum threshold and heart failure in determining propensity for Ca2+ waves in sheep heart. J Physiol. 2022;600(11):2637–2650. doi: 10.1113/JP282168.
  • Chaanine AH, Higgins L, Lauterboeck L, et al. Multiomics approach reveals an important role of BNIP3 in myocardial remodeling and the pathogenesis of heart failure with reduced ejection fraction. Cells. 2022;11(9):1572. doi: 10.3390/cells11091572.
  • Doenst T, Nguyen TD, Abel ED. Cardiac metabolism in heart failure: implications beyond ATP production. Circ Res. 2013;113(6):709–724. doi: 10.1161/CIRCRESAHA.113.300376.
  • Lemaitre RN, Jensen PN, Hoofnagle A, et al. Plasma ceramides and sphingomyelins in relation to heart failure risk. Circ Heart Fail. 2019;12:e5708.
  • Yu J, Pan W, Shi R, et al. Ceramide is upregulated and associated with mortality in patients with chronic heart failure. Can J Cardiol. 2015;31(3):357–363. doi: 10.1016/j.cjca.2014.12.007.
  • Law BA, Liao X, Moore KS, et al. Lipotoxic very‐long‐chain ceramides cause mitochondrial dysfunction, oxidative stress, and cell death in cardiomyocytes. Faseb J. 2018;32(3):1403–1416. doi: 10.1096/fj.201700300R.
  • Sasset L, Manzo OL, Zhang Y, et al. Nogo-A reduces ceramidede novo biosynthesis to protect from heart failure. Cardiovasc Res. 2023;119(2):506–519. doi: 10.1093/cvr/cvac108.
  • Santulli G, Iaccarino G. Adrenergic signaling in heart failure and cardiovascular aging. Maturitas. 2016;93:65–72. doi: 10.1016/j.maturitas.2016.03.022.
  • Lin LY, Wu CK, Juang JM, et al. Myocardial regional interstitial fibrosis is associated with left intra-ventricular dyssynchrony in patients with heart failure: a cardiovascular magnetic resonance study. Sci Rep. 2016;6(1):20711. doi: 10.1038/srep20711.
  • Trial J, Entman ML, Cieslik KA. Mesenchymal stem cell-derived inflammatory fibroblasts mediate interstitial fibrosis in the aging heart. J Mol Cell Cardiol. 2016;91:28–34. doi: 10.1016/j.yjmcc.2015.12.017.