608
Views
0
CrossRef citations to date
0
Altmetric
Gastroenterology

Using deep learning to assess the function of gastroesophageal flap valve according to the Hill classification system

ORCID Icon, , ORCID Icon, , , , & ORCID Icon show all
Article: 2279239 | Received 27 Jun 2023, Accepted 26 Oct 2023, Published online: 10 Nov 2023

References

  • Gyawali CP, Kahrilas PJ, Savarino E, et al. Modern diagnosis of GERD: the lyon consensus. Gut. 2018;67(7):1–14. doi: 10.1136/gutjnl-2017-314722.
  • Xie C, Li Y, Zhang N, et al. Gastroesophageal flap valve reflected EGJ morphology and correlated to acid reflux. BMC Gastroenterol. 2017;17(1):118. doi: 10.1186/s12876-017-0693-7.
  • Tocornal JA, Snow HD, Fonkalsrud EW. A mucosol flap valve mechanism to prevent gastroesophageal reflux and esophagitis. Surgery. 1968;64(2):519–523.
  • Thor KB, Hill LD, Mercer DD, et al. Reappraisal of the flap valve mechanism in the gastroesophageal junction. A study of a new valvuloplasty procedure in cadavers. Acta Chir Scand. 1987;153(1):25–28.
  • Hill LD, Kozarek RA, Kraemer SJ, et al. The gastroesophageal flap valve: in vitro and in vivo observations. Gastrointest Endosc. 1996;44(5):541–547. doi: 10.1016/s0016-5107(96)70006-8.
  • Osman A, Albashir MM, Nandipati K, et al. Esophagogastric junction morphology on Hill’s classification predicts gastroesophagealreflux with good accuracy and consistency. Dig Dis Sci. 2021;66(1):151–159. doi: 10.1007/s10620-020-06146-0.
  • Fujiwara Y, Higuchi K, Shiba M, et al. Association between gastroesophageal flap valve, reflux esophagitis, Barrett’s epithelium, and atrophic gastritis assessed by endoscopy in Japanese patients. J Gastroenterol. 2003;38(6):533–539. doi: 10.1007/s00535-002-1100-9.
  • Koya Y, Shibata M, Watanabe T, et al. Influence of gastroesophageal flap valve on esophageal variceal bleeding in patients with liver cirrhosis. Dig Endosc. 2021;33(1):100–109. doi: 10.1111/den.13685.
  • Wu W, Li L, Qu C, et al. Reflux finding score is associated with gastroesophageal flap valve status in patients with laryngopharyngeal reflux disease: a retrospective study. Sci Rep. 2019;9(1):15744. doi: 10.1038/s41598-019-52349-5.
  • Quach DT, Nguyen TT, Hiyama T. Abnormal gastroesophageal flap valve is associated with high gastresophageal reflux disease questionnaire score and the severity of gastroesophageal reflux disease in vietnamese patients with upper gastrointestinal symptoms. J Neurogastroenterol Motil. 2018;24(2):226–232. doi: 10.5056/jnm17088.
  • Håkanson BS, Lundell L, Bylund A, et al. Comparison of laparoscopic 270° posterior partial fundoplication vs total fundoplication for the treatment of gastroesophageal reflux disease: a randomized clinical trial. JAMA Surg. 2019;154(6):479–486. doi: 10.1001/jamasurg.2019.0047.
  • Sui X, Gao X, Zhang L, et al. Clinical efficacy of endoscopic antireflux mucosectomy vs. Stretta radiofrequency in the treatment of gastroesophageal reflux disease: a retrospective, single-center cohort study. Ann Transl Med. 2022;10(12):660–660. doi: 10.21037/atm-22-2071.
  • Guo Z, Wu Y, Zhan Y, et al. Correlation between gastroesophageal flap valve abnormality and novel parameters in patients with gastroesophageal reflux disease symptoms by the lyon consensus. Sci Rep. 2021;11(1):15076. doi: 10.1038/s41598-021-94149-w.
  • Jeyaraj PR, Samuel Nadar ER. Computer-assisted medical image classification for early diagnosis of oral cancer employing deep learning algorithm. J Cancer Res Clin Oncol. 2019;145(4):829–837. doi: 10.1007/s00432-018-02834-7.
  • Guan Q, Wang Y, Du J, et al. Deep learning based classification of ultrasound images for thyroid nodules: a large scale of pilot study. Ann Transl Med. 2019;7(7):137–137. doi: 10.21037/atm.2019.04.34.
  • Chen X, Wang X, Zhang K, et al. Recent advances and clinical applications of deep learning in medical image analysis. Med Image Anal. 2022;79:102444. doi: 10.1016/j.media.2022.102444.
  • Lo SB, Lou SA, Lin JS, et al. Artificial convolution neural network techniques and applications for lung nodule detection. IEEE Trans Med Imaging. 1995;14(4):711–718. doi: 10.1109/42.476112.
  • Wang CC, Chiu YC, Chen WL, et al. A deep learning model for classification of endoscopic gastroesophageal reflux disease. Int J Environ Res Public Health. 2021;18(5):2428. doi: 10.3390/ijerph18052428.
  • Yen HH, Tsai HY, Wang CC, et al. An improved endoscopic automatic classification model for gastroesophageal reflux disease using deep learning integrated machine learning. Diagnostics. 2022;12(11):2827. doi: 10.3390/diagnostics12112827.
  • Ge Z, Wang B, Chang J, et al. Using deep learning and explainable artificial intelligence to assess the severity of gastroesophageal reflux disease according to the Los Angeles classification system. Scand J Gastroenterol. 2023;58(6):596–604. doi: 10.1080/00365521.2022.2163185.
  • Hu J, Shen L, Albanie S, et al. Squeeze-and-excitation networks. IEEE Trans Pattern Anal Mach Intell. 2020;42(8):2011–2023. doi: 10.1109/TPAMI.2019.2913372.
  • Wang F, Jiang M, Qian C, et al. 2017). Residual attention network for image classification. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 6450–6458. doi: 10.1109/CVPR.2017.683.
  • Huang G, Liu Z, Weinberger KQ. 2016). Densely connected convolutional networks. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2261–2269.
  • Szegedy C, Liu W, Jia Y, et al. 2014). Going deeper with convolutions. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 1–9.
  • Sandler M, Howard AG, Zhu M, et al. 2018). MobileNetV2: inverted residuals and linear bottlenecks. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 4510–4520.
  • Zoph B, Vasudevan V, Shlens J, et al. 2017). Learning transferable architectures for scalable image recognition. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 8697–8710.
  • He K, Zhang X, Ren S, et al. 2015). Deep residual learning forimage recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 770–778.
  • Xie S, Girshick RB, Dollár P, et al. 2016). Aggregated residual transformations for deep neural networks. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 5987–5995.
  • Ma N, Zhang X, Zheng H, et al. 2018). ShuffleNet V2: practical guidelines for efficient CNN architecture design. ArXiv, abs/1807.11164
  • Simonyan K, Zisserman A. 2014). Very deep convolutional networks for large-scale image recognition. CoRR, abs/1409.1556
  • Chollet F. 2016). Xception: Deep learning with depthwise separable convolutions. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 1800–1807.
  • Das A, Rad P. 2020). Opportunities and challenges in explainable artificial intelligence (XAI): a survey. ArXiv, abs/2006.11371
  • Selvaraju RR, Das A, Vedantam R, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization. Int J Comput Vis. 2020;128(2):336–359. doi: 10.1007/s11263-019-01228-7.
  • Xu Y, Tan Y, Wang Y, et al. A gratifying step forward for the application of artificial intelligence in the field of endoscopy: a narrative review. Surg Laparosc Endosc Percutan Tech. 2020;31(2):254–263. doi: 10.1097/SLE.0000000000000881.
  • Song YQ, Mao XL, Zhou XB, et al. Use of artificial intelligence to improve the quality control of gastrointestinal endoscopy. Front Med. 2021;8:709347. doi: 10.3389/fmed.2021.709347.
  • Kim GH, Song GA, Kim TO, et al. Endoscopic grading of gastroesophageal flap valve and atrophic gastritis is helpful to predict gastroesophageal reflux. J Gastroenterol Hepatol. 2008;23(2):208–214. doi: 10.1111/j.1440-1746.2007.05038.x.
  • Kim GH, Kang DH, Song GA, et al. Gastroesophageal flap valve is associated with gastroesophageal and gastropharyngeal reflux. J Gastroenterol. 2006;41(7):654–661. doi: 10.1007/s00535-006-1819-9.
  • Ko SH, Baeg MK, Jung HS, et al. Russian Caucasians have a higher risk of erosive reflux disease compared with East Asians: a direct endoscopic comparison. Neurogastroenterol Motil. 2017;29(5):. doi: 10.1111/nmo.13002.
  • Bao Y, Chen X, Xu Y, et al. Association between gastroesophageal flap valve and endoscopically diagnosed gastroesophageal reflux disease according to lyon consensus: a meta-analysis of Asian studies. J Clin Gastroenterol. 2022;56(5):393–400. doi: 10.1097/MCG.0000000000001552.
  • Inoue H, Ito H, Ikeda H, et al. Anti-reflux mucosectomy for gastroesophageal reflux disease in the absence of hiatus hernia: a pilot study. Ann Gastroenterol. 2014;27(4):346–351.
  • Yoo IK, Ko WJ, Kim HS, et al. Anti-reflux mucosectomy using a cap-assisted endoscopic mucosal resection method for refractory gastroesophageal disease: a prospective feasibility study. Surg Endosc. 2020;34(3):1124–1131. doi: 10.1007/s00464-019-06859-y.
  • Li Z, Li Y, Wu Y, et al. Endoscopic tightening of the cardia mucosa in gastroesophageal reflux disease: a case series of 120 patients up to 1-year follow-up. J clinical transl res. 2022;8(2):147–151.
  • Nguyen NT, Thosani NC, Canto MI, et al. The American Foregut society white paper on the endoscopic classification of esophagogastric junction integrity. Foregut: the Journal of the American Foregut Society. 2022;2(4):339–348. doi: 10.1177/26345161221126961.