534
Views
0
CrossRef citations to date
0
Altmetric
Gastroenterology

PTPN13 rs989902 and CHEK2 rs738722 are associated with esophageal cancer

, , , , , , , , & show all
Article: 2281659 | Received 25 Jul 2023, Accepted 03 Nov 2023, Published online: 01 Dec 2023

References

  • Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):1–10. doi: 10.3322/caac.21492.
  • Harada K, Rogers JE, Iwatsuki M, et al. Recent advances in treating oesophageal cancer. F1000Res. 2020;9:1189. doi: 10.12688/f1000research.22926.1.
  • Niu C, Liu Y, Wang J, et al. Risk factors for esophageal squamous cell carcinoma and its histological precursor lesions in China: a multicenter cross-sectional study. BMC Cancer. 2021;21(1):1034. doi: 10.1186/s12885-021-08764-x.
  • Li Y, Yang B, Ma Y, et al. Phosphoproteomics reveals therapeutic targets of esophageal squamous cell carcinoma. Signal Transduct Target Ther. 2021;6(1):381. doi: 10.1038/s41392-021-00682-5.
  • Ko KP, Huang Y, Zhang S, et al. Key genetic determinants driving esophageal squamous cell carcinoma initiation and immune evasion. Gastroenterology. 2023;165(3):613–628.e20. doi: 10.1053/j.gastro.2023.05.030.
  • Chen T, Cheng H, Chen X, et al. Family history of esophageal cancer increases the risk of esophageal squamous cell carcinoma. Sci Rep. 2015;5(1):16038. doi: 10.1038/srep16038.
  • Dong J, Buas MF, Gharahkhani P, et al. Determining risk of Barrett’s esophagus and esophageal adenocarcinoma based on epidemiologic factors and genetic variants. Gastroenterology. 2018;154(5):1273–1281.e3. doi: 10.1053/j.gastro.2017.12.003.
  • Jajosky A, Fels Elliott DR. Esophageal cancer genetics and clinical translation. Thorac Surg Clin. 2022;32(4):425–435. doi: 10.1016/j.thorsurg.2022.06.002.
  • Mahmood MQ, Shukla SD, Dua K, et al. The role of epidermal growth factor receptor in the management of gastrointestinal carcinomas: present status and future perspectives. Curr Pharm Des. 2017;23(16):2314–2320. doi: 10.2174/1381612823666170124115159.
  • Shen Y, Shao Y, Ruan X, et al. Genetic variant in miR-17-92 cluster binding sites is associated with esophageal squamous cell carcinoma risk in Chinese population. BMC Cancer. 2022;22(1):1253. doi: 10.1186/s12885-022-10360-6.
  • Xu X, Sun Z, Rong L, et al. Genetic variant of ADH1C for predicting survival in esophageal squamous cell cancer patients who underwent postoperative radiotherapy. Front Genet. 2022;13:988433. doi: 10.3389/fgene.2022.988433.
  • van den Maagdenberg AM, Olde Weghuis D, Rijss J, et al. The gene (PTPN13) encoding the protein tyrosine phosphatase PTP-BL/PTP-BAS is located in mouse chromosome region 5E/F and human chromosome region 4q21. Cytogenet Cell Genet. 1996;74(1–2):153–155. doi: 10.1159/000134405.
  • McHeik S, Aptecar L, Coopman P. et al. Dual Role of the PTPN13 Tyrosine Phosphatase in Cancer. Biomolecules. 2020;10(12):1659.
  • Freiss G, Chalbos D. PTPN13/PTPL1: an important regulator of tumor aggressiveness. Anticancer Agents Med Chem. 2011;11(1):78–88. doi: 10.2174/187152011794941262.
  • Yu M, Maden SK, Stachler M, et al. Subtypes of barrett’s oesophagus and oesophageal adenocarcinoma based on genome-wide methylation analysis. Gut. 2019;68(3):389–399. doi: 10.1136/gutjnl-2017-314544.
  • Laczmanska I, Karpinski P, Gil J, et al. The PTPN13 Y2081D (T > G) (rs989902) polymorphism is associated with an increased risk of sporadic colorectal cancer. Colorectal Dis. 2017;19(7):O272–O278. O272-o8. doi: 10.1111/codi.13727.
  • Wei W, Jiang M, Luo L, et al. Colorectal cancer susceptibility variants alter risk of breast cancer in a chinese han population. Genet Mol Res. 2013;12(4):6268–6274. doi: 10.4238/2013.December.4.14.
  • Niu J, Huang YJ, Wang LE, et al. Genetic polymorphisms in the PTPN13 gene and risk of squamous cell carcinoma of head and neck. Carcinogenesis. 2009;30(12):2053–2058. doi: 10.1093/carcin/bgp265.
  • Shieh SY, Ahn J, Tamai K, et al. The human homologs of checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylate p53 at multiple DNA damage-inducible sites. Genes Dev. 2000;14(3):289–300. doi: 10.1101/gad.14.3.289.
  • Nguyen-Dumont T, Dowty JG, Steen JA, et al. Population-based estimates of the age-specific cumulative risk of breast cancer for pathogenic variants in CHEK2: findings from the Australian breast cancer family registry. Cancers . 2021;13(6):1378. doi: 10.3390/cancers13061378.
  • Fei-Fei H, Chang-Long G, Li-Hong L. The effect of CHEK2 variant I157T on cancer susceptibility: evidence from a meta-analysis. DNA Cell Biol. 2013;32(6):329–335. doi: 10.1089/dna.2013.1970.
  • Hu N, Kadota M, Liu H, et al. Genomic landscape of somatic alterations in esophageal squamous cell carcinoma and gastric cancer. Cancer Res. 2016;76(7):1714–1723. doi: 10.1158/0008-5472.CAN-15-0338.
  • Jia X, Liu P, Zhang M, et al. Genetic variants at 6p21, 10q23, 16q21 and 22q12 are associated with esophageal cancer risk in a Chinese Han population. Int J Clin Exp Med. 2015;8(10):19381–19387.
  • Yang J, Wu H, Wei S, et al. HPV seropositivity joints with susceptibility loci identified in GWASs at apoptosis associated genes to increase the risk of esophageal squamous cell carcinoma (ESCC). BMC Cancer. 2014;14(1):501. doi: 10.1186/1471-2407-14-501.
  • Gabriel S, Ziaugra L. SNP genotyping using sequenom MassARRAY 7K platform. Curr Protoc Hum Genet. 2004; Chapter 2:Unit 2.12. doi: 10.1002/0471142905.hg0212s42.
  • Bland JM, Altman DG. Statistics notes. The odds ratio. BMJ. 2000;320(7247):1468–1468. doi: 10.1136/bmj.320.7247.1468.
  • Wacholder S, Chanock S, Garcia-Closas M, et al. Assessing the probability that a positive report is false: an approach for molecular epidemiology studies. J Natl Cancer Inst. 2004;96(6):434–442. doi: 10.1093/jnci/djh075.
  • Mita Y, Yasuda Y, Sakai A, et al. Missense polymorphisms of PTPRJ and PTPN13 genes affect susceptibility to a variety of human cancers. J Cancer Res Clin Oncol. 2010;136(2):249–259. doi: 10.1007/s00432-009-0656-7.
  • Jalilvand M, Oloomi M, Najafipour R, et al. An association study between CHEK2 gene mutations and susceptibility to breast cancer. Comp Clin Path. 2017;26(4):837–845. doi: 10.1007/s00580-017-2455-x.
  • Kate L, Iversen ES, Jonathan T, et al. Common variants at the CHEK2 gene locus and risk of epithelial ovarian cancer. Carcinogenesis. 2015;36(11):1341–1353. doi: 10.1093/carcin/bgv138.
  • Wang Y, Dai B, Ye D. CHEK2 mutation and risk of prostate cancer: a systematic review and meta-analysis. Int J Clin Exp Med. 2015;8(9):15708–15715.
  • Monika SE, Cezary C, Danuta GSP, et al. CHEK2 mutations and the risk of papillary thyroid cancer. Int J Cancer. 2015;137(3):548–552.
  • Xu W, Liu D, Yang Y, et al. Association of CHEK2 polymorphisms with the efficacy of platinum-based chemotherapy for advanced non-small-cell lung cancer in Chinese never-smoking women. J Thorac Dis. 2016;8(9):2519–2529. doi: 10.21037/jtd.2016.08.70.
  • Gu H, Qiu W, Wan Y, et al. Variant allele of CHEK2 is associated with a decreased risk of esophageal cancer lymph node metastasis in a Chinese population. Mol Biol Rep. 2012;39(5):5977–5984. doi: 10.1007/s11033-011-1410-1.
  • Jia X, Liu P, Zhang M, et al. Genetic variants at 6p21, 10q23, 16q21 and 22q12 are associated with esophageal cancer risk in the Chinese Han population. Int J Clin Exp Med. 2015;8(10):19381.
  • Abnet CC, Arnold M, Wei WQ. Epidemiology of esophageal squamous cell carcinoma. Gastroenterology. 2018;154(2):360–373. doi: 10.1053/j.gastro.2017.08.023.
  • Chung CS, Lee YC, Wang CP, et al. Secondary prevention of esophageal squamous cell carcinoma in areas where smoking, alcohol, and betel quid chewing are prevalent. J Formos Med Assoc. 2010;109(6):408–421. doi: 10.1016/S0929-6646(10)60072-1.
  • Ferndale L, Aldous C, Hift R, et al. Gender differences in oesophageal squamous cell carcinoma in a South African tertiary hospital. Int J Environ Res Public Health. 2020;17(19):7086. doi: 10.3390/ijerph17197086.